A novel method for adaptive control of deformable mirrors

控制理论(社会学) 非线性系统 执行机构 计算机科学 自适应控制 变形镜 基础(线性代数) 控制系统 控制工程 控制(管理) 人工智能 工程类 数学 物理 电气工程 量子力学 几何学
作者
Aleksandar Haber
标识
DOI:10.1117/12.2609238
摘要

For sufficiently wide ranges of applied control signals (control voltages), MEMS and piezoelectric Deformable Mirrors (DMs), exhibit nonlinear behavior. The nonlinear behavior manifests itself in nonlinear actuator couplings, nonlinear actuator deformation characteristics, and in the case of piezoelectric DMs, hysteresis. Furthermore, in a number of situations, DM behavior can change over time, and this requires a procedure for updating the DM models on the basis of the observed data. If not properly modeled and if not taken into account when designing control algorithms, nonlinearities, and time-varying DM behavior, can significantly degrade the achievable closed-loop performance of Adaptive Optics (AO) systems. Widely used approaches for DM control are based on pre-estimated linear time-invariant DM models in the form of influence matrices. Often, these models are not being updated during system operation. Consequently, when nonlinear DM behavior is being excited by control signals with wide operating ranges, or when the DM behavior changes over time, the state-of-the-art DM control approaches relying upon linear control methods, might not be able to produce a satisfactory closed-loop performance of an AO system. Motivated by these key facts, we present a novel method for data-driven DM control. Our approach combines a simple open-loop control method with a recursive least squares method for dynamically updating the DM model. The DM model is constantly being updated on the basis of the dynamically changing DM operating points. That is, the proposed method updates both the control actions and the DM model during the system operation. We experimentally verify this approach on a Boston Micromachines MEMS DM with 140 actuators. Preliminary experimental results reported in this manuscript demonstrate good potential for using the developed method for DM control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助碧蓝的盼秋采纳,获得10
1秒前
Owen应助我是鸡汤采纳,获得10
2秒前
虚心焦完成签到 ,获得积分10
2秒前
4秒前
4秒前
艾迪富富完成签到,获得积分10
4秒前
积极幻桃应助白榆采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
小坤同学发布了新的文献求助10
6秒前
7秒前
紫津发布了新的文献求助10
7秒前
7秒前
科研通AI5应助成就的翠琴采纳,获得10
9秒前
10秒前
zzz发布了新的文献求助10
10秒前
迪宝有好运完成签到,获得积分20
11秒前
11秒前
yiyiy完成签到,获得积分10
12秒前
淡然的铭发布了新的文献求助10
12秒前
12秒前
斯文败类应助超帅凡阳采纳,获得10
14秒前
14秒前
Owen应助四月采纳,获得20
14秒前
Quinna发布了新的文献求助10
15秒前
在水一方应助温柔映阳采纳,获得200
15秒前
16秒前
眯眯眼的芷天完成签到,获得积分10
16秒前
ZJH完成签到,获得积分20
16秒前
17秒前
思源应助Keyl采纳,获得10
18秒前
万能图书馆应助故晨采纳,获得10
19秒前
19秒前
爆米花应助excellent采纳,获得10
19秒前
21秒前
22秒前
彬彬完成签到,获得积分10
22秒前
blank发布了新的文献求助10
23秒前
23秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Economic Geography and Public Policy 900
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021