Coupled Noise Reduction in Distributed Acoustic Sensing Seismic Data Based on Convolutional Neural Network

计算机科学 降噪 噪音(视频) 检波器 卷积神经网络 噪声测量 数据集 人工智能 语音识别 地震学 地质学 图像(数学)
作者
Yuxing Zhao,Yue Li,Ning Wu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:13
标识
DOI:10.1109/lgrs.2022.3144421
摘要

Distributed acoustic sensing (DAS) is widely recognized as a new technology to replace conventional geophones for the acquisition of seismic data. However, the collected data often contain a lot of coupled noise due to cable slapping and ringing along the borehole casing, which brings great difficulties to the interpretation of seismic data. The existing conventional coupled noise reduction methods often need to estimate the parameters of each coupled noise (such as amplitude, noise period, attenuation coefficient, etc.), which takes a lot of time and cannot meet the requirements for large-data-volume DAS seismic data processing. In addition, some deep learning-based denoising methods lack detailed analysis on coupled noise and have problems in the construction of training sets, resulting in insufficient generalization ability of the denoising model. To solve these problems, we propose a coupled noise reduction method based on the convolutional neural network (CNN). The proposed method does not need to estimate the parameters of coupled noise, and the denoising process is more convenient and efficient. In addition, through the analysis of DAS seismic data, we also construct a training set for coupled noise reduction using real data and synthetic data. The denoising results of both synthetic data and field data show that the proposed method can effectively reduce the coupled noise in DAS seismic data, and the effective signal has almost no energy loss. After processing, the signal affected by coupled noise becomes clear and continuous, providing high-quality data support for subsequent interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助Ken77采纳,获得10
1秒前
汉堡包应助风趣手链采纳,获得10
2秒前
2秒前
大个应助王博采纳,获得10
3秒前
李爱国应助那时花开采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
jackzzs完成签到,获得积分10
4秒前
加菲丰丰应助科研通管家采纳,获得20
5秒前
沉默的惜芹完成签到 ,获得积分20
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Lucas应助线呢采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
wzzznh完成签到 ,获得积分10
10秒前
WB87应助科研通管家采纳,获得10
10秒前
10秒前
WB87应助科研通管家采纳,获得10
10秒前
加菲丰丰应助科研通管家采纳,获得20
11秒前
柏林寒冬应助科研通管家采纳,获得10
11秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
Truman发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
winfan完成签到 ,获得积分10
18秒前
19秒前
科目三应助郎晟采纳,获得10
19秒前
21秒前
22秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425342
求助须知:如何正确求助?哪些是违规求助? 4539399
关于积分的说明 14167889
捐赠科研通 4456910
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740