Coupled Noise Reduction in Distributed Acoustic Sensing Seismic Data Based on Convolutional Neural Network

计算机科学 降噪 噪音(视频) 检波器 卷积神经网络 噪声测量 数据集 人工智能 语音识别 地震学 地质学 图像(数学)
作者
Yuxing Zhao,Yue Li,Ning Wu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:13
标识
DOI:10.1109/lgrs.2022.3144421
摘要

Distributed acoustic sensing (DAS) is widely recognized as a new technology to replace conventional geophones for the acquisition of seismic data. However, the collected data often contain a lot of coupled noise due to cable slapping and ringing along the borehole casing, which brings great difficulties to the interpretation of seismic data. The existing conventional coupled noise reduction methods often need to estimate the parameters of each coupled noise (such as amplitude, noise period, attenuation coefficient, etc.), which takes a lot of time and cannot meet the requirements for large-data-volume DAS seismic data processing. In addition, some deep learning-based denoising methods lack detailed analysis on coupled noise and have problems in the construction of training sets, resulting in insufficient generalization ability of the denoising model. To solve these problems, we propose a coupled noise reduction method based on the convolutional neural network (CNN). The proposed method does not need to estimate the parameters of coupled noise, and the denoising process is more convenient and efficient. In addition, through the analysis of DAS seismic data, we also construct a training set for coupled noise reduction using real data and synthetic data. The denoising results of both synthetic data and field data show that the proposed method can effectively reduce the coupled noise in DAS seismic data, and the effective signal has almost no energy loss. After processing, the signal affected by coupled noise becomes clear and continuous, providing high-quality data support for subsequent interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶小文发布了新的文献求助10
1秒前
old杜发布了新的文献求助10
1秒前
li完成签到 ,获得积分10
2秒前
yyy发布了新的文献求助10
3秒前
3秒前
司马秋凌完成签到,获得积分10
5秒前
彭于晏应助糟糕的铁锤采纳,获得50
6秒前
6秒前
安详砖家完成签到,获得积分10
7秒前
梁潇桦完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
脑洞疼应助火羊宝采纳,获得10
10秒前
细草微风岸完成签到,获得积分10
10秒前
李爱国应助huahuahua采纳,获得10
11秒前
冷傲书萱发布了新的文献求助10
11秒前
黄紫红完成签到 ,获得积分10
12秒前
摸俞发布了新的文献求助10
13秒前
享受不良诱惑完成签到,获得积分10
14秒前
结实的胡萝卜完成签到,获得积分10
16秒前
17秒前
18秒前
科研通AI2S应助李昕123采纳,获得10
18秒前
研友_VZG7GZ应助milu采纳,获得10
18秒前
JZL完成签到 ,获得积分10
19秒前
20秒前
超帅平蝶完成签到,获得积分10
20秒前
23秒前
毛儿豆儿发布了新的文献求助10
23秒前
博珺辰发布了新的文献求助10
23秒前
酷波er应助摸俞采纳,获得10
24秒前
byron发布了新的文献求助10
24秒前
科研通AI2S应助yue采纳,获得10
25秒前
量子星尘发布了新的文献求助10
25秒前
秋夏山完成签到,获得积分10
26秒前
26秒前
lawang发布了新的文献求助10
28秒前
29秒前
嘉悦发布了新的文献求助10
29秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421862
求助须知:如何正确求助?哪些是违规求助? 4536861
关于积分的说明 14155275
捐赠科研通 4453423
什么是DOI,文献DOI怎么找? 2442864
邀请新用户注册赠送积分活动 1434254
关于科研通互助平台的介绍 1411370