Coupled Noise Reduction in Distributed Acoustic Sensing Seismic Data Based on Convolutional Neural Network

计算机科学 降噪 噪音(视频) 检波器 卷积神经网络 噪声测量 数据集 人工智能 语音识别 地震学 地质学 图像(数学)
作者
Yuxing Zhao,Yue Li,Ning Wu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:13
标识
DOI:10.1109/lgrs.2022.3144421
摘要

Distributed acoustic sensing (DAS) is widely recognized as a new technology to replace conventional geophones for the acquisition of seismic data. However, the collected data often contain a lot of coupled noise due to cable slapping and ringing along the borehole casing, which brings great difficulties to the interpretation of seismic data. The existing conventional coupled noise reduction methods often need to estimate the parameters of each coupled noise (such as amplitude, noise period, attenuation coefficient, etc.), which takes a lot of time and cannot meet the requirements for large-data-volume DAS seismic data processing. In addition, some deep learning-based denoising methods lack detailed analysis on coupled noise and have problems in the construction of training sets, resulting in insufficient generalization ability of the denoising model. To solve these problems, we propose a coupled noise reduction method based on the convolutional neural network (CNN). The proposed method does not need to estimate the parameters of coupled noise, and the denoising process is more convenient and efficient. In addition, through the analysis of DAS seismic data, we also construct a training set for coupled noise reduction using real data and synthetic data. The denoising results of both synthetic data and field data show that the proposed method can effectively reduce the coupled noise in DAS seismic data, and the effective signal has almost no energy loss. After processing, the signal affected by coupled noise becomes clear and continuous, providing high-quality data support for subsequent interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助80s采纳,获得10
刚刚
清韵微风完成签到,获得积分10
1秒前
脑洞疼应助echo采纳,获得30
1秒前
echo驳回了田様应助
2秒前
失眠的问梅完成签到,获得积分10
2秒前
左左完成签到,获得积分10
2秒前
wjthhhh发布了新的文献求助10
3秒前
KHromance完成签到,获得积分10
3秒前
4秒前
5秒前
施文涛发布了新的文献求助30
5秒前
5秒前
5秒前
无敌W完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
jijiguo发布了新的文献求助10
9秒前
余姚发布了新的文献求助10
9秒前
10秒前
10秒前
zhou完成签到,获得积分10
10秒前
施文涛完成签到,获得积分10
10秒前
11秒前
11秒前
jssgy发布了新的文献求助10
11秒前
王泽发布了新的文献求助10
12秒前
花开富贵发布了新的文献求助10
12秒前
吴思航发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
80s发布了新的文献求助10
14秒前
冷月完成签到,获得积分10
15秒前
15秒前
leapfrog发布了新的文献求助30
15秒前
研友_89jWGL完成签到,获得积分10
17秒前
17秒前
善学以致用应助畅快代柔采纳,获得10
17秒前
科研通AI6应助谈笑间采纳,获得30
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406315
求助须知:如何正确求助?哪些是违规求助? 4524393
关于积分的说明 14097868
捐赠科研通 4438136
什么是DOI,文献DOI怎么找? 2436010
邀请新用户注册赠送积分活动 1428144
关于科研通互助平台的介绍 1406292