Coupled Noise Reduction in Distributed Acoustic Sensing Seismic Data Based on Convolutional Neural Network

计算机科学 降噪 噪音(视频) 检波器 卷积神经网络 噪声测量 数据集 人工智能 语音识别 地震学 地质学 图像(数学)
作者
Yuxing Zhao,Yue Li,Ning Wu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:13
标识
DOI:10.1109/lgrs.2022.3144421
摘要

Distributed acoustic sensing (DAS) is widely recognized as a new technology to replace conventional geophones for the acquisition of seismic data. However, the collected data often contain a lot of coupled noise due to cable slapping and ringing along the borehole casing, which brings great difficulties to the interpretation of seismic data. The existing conventional coupled noise reduction methods often need to estimate the parameters of each coupled noise (such as amplitude, noise period, attenuation coefficient, etc.), which takes a lot of time and cannot meet the requirements for large-data-volume DAS seismic data processing. In addition, some deep learning-based denoising methods lack detailed analysis on coupled noise and have problems in the construction of training sets, resulting in insufficient generalization ability of the denoising model. To solve these problems, we propose a coupled noise reduction method based on the convolutional neural network (CNN). The proposed method does not need to estimate the parameters of coupled noise, and the denoising process is more convenient and efficient. In addition, through the analysis of DAS seismic data, we also construct a training set for coupled noise reduction using real data and synthetic data. The denoising results of both synthetic data and field data show that the proposed method can effectively reduce the coupled noise in DAS seismic data, and the effective signal has almost no energy loss. After processing, the signal affected by coupled noise becomes clear and continuous, providing high-quality data support for subsequent interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wusj120完成签到,获得积分10
刚刚
科研发布了新的文献求助10
1秒前
斯文败类应助小陈同学采纳,获得10
1秒前
zhu发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
公子襄完成签到,获得积分10
4秒前
naturehome完成签到,获得积分10
4秒前
xfye发布了新的文献求助20
6秒前
kitlov完成签到,获得积分20
6秒前
大模型应助曾泓跃采纳,获得10
6秒前
yichuanfendai完成签到,获得积分20
7秒前
niepan发布了新的文献求助10
7秒前
maxinyu完成签到 ,获得积分10
8秒前
8秒前
9秒前
852应助洁净白容采纳,获得10
10秒前
10秒前
上官若男应助yichuanfendai采纳,获得10
12秒前
瑞rui发布了新的文献求助30
13秒前
王多多发布了新的文献求助10
14秒前
yysy完成签到 ,获得积分10
15秒前
16秒前
陈思发布了新的文献求助10
16秒前
16秒前
16秒前
领导范儿应助科研采纳,获得30
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
小豆完成签到,获得积分20
19秒前
干净绮烟发布了新的文献求助10
20秒前
20秒前
ws发布了新的文献求助10
20秒前
luis发布了新的文献求助10
20秒前
death123517完成签到,获得积分10
20秒前
调皮霍乱弧菌完成签到 ,获得积分10
21秒前
伍襟傧完成签到,获得积分10
21秒前
情怀应助椎夭采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492