Coupled Noise Reduction in Distributed Acoustic Sensing Seismic Data Based on Convolutional Neural Network

计算机科学 降噪 噪音(视频) 检波器 卷积神经网络 噪声测量 数据集 人工智能 语音识别 地震学 地质学 图像(数学)
作者
Yuxing Zhao,Yue Li,Ning Wu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:13
标识
DOI:10.1109/lgrs.2022.3144421
摘要

Distributed acoustic sensing (DAS) is widely recognized as a new technology to replace conventional geophones for the acquisition of seismic data. However, the collected data often contain a lot of coupled noise due to cable slapping and ringing along the borehole casing, which brings great difficulties to the interpretation of seismic data. The existing conventional coupled noise reduction methods often need to estimate the parameters of each coupled noise (such as amplitude, noise period, attenuation coefficient, etc.), which takes a lot of time and cannot meet the requirements for large-data-volume DAS seismic data processing. In addition, some deep learning-based denoising methods lack detailed analysis on coupled noise and have problems in the construction of training sets, resulting in insufficient generalization ability of the denoising model. To solve these problems, we propose a coupled noise reduction method based on the convolutional neural network (CNN). The proposed method does not need to estimate the parameters of coupled noise, and the denoising process is more convenient and efficient. In addition, through the analysis of DAS seismic data, we also construct a training set for coupled noise reduction using real data and synthetic data. The denoising results of both synthetic data and field data show that the proposed method can effectively reduce the coupled noise in DAS seismic data, and the effective signal has almost no energy loss. After processing, the signal affected by coupled noise becomes clear and continuous, providing high-quality data support for subsequent interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leftarrow发布了新的文献求助10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得20
刚刚
浮游应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
圆锥香蕉应助科研通管家采纳,获得60
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
3秒前
Ruby发布了新的文献求助10
3秒前
霭祢完成签到 ,获得积分10
4秒前
城北徐公完成签到,获得积分20
5秒前
111完成签到,获得积分20
5秒前
独特笙完成签到,获得积分10
6秒前
6秒前
7秒前
gyh完成签到,获得积分20
7秒前
科目三应助孤独的柠檬采纳,获得10
7秒前
LZC完成签到,获得积分10
7秒前
ayuelei发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546792
求助须知:如何正确求助?哪些是违规求助? 3977943
关于积分的说明 12317707
捐赠科研通 3646410
什么是DOI,文献DOI怎么找? 2008137
邀请新用户注册赠送积分活动 1043717
科研通“疑难数据库(出版商)”最低求助积分说明 932388