Coupled Noise Reduction in Distributed Acoustic Sensing Seismic Data Based on Convolutional Neural Network

计算机科学 降噪 噪音(视频) 检波器 卷积神经网络 噪声测量 数据集 人工智能 语音识别 地震学 地质学 图像(数学)
作者
Yuxing Zhao,Yue Li,Ning Wu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:13
标识
DOI:10.1109/lgrs.2022.3144421
摘要

Distributed acoustic sensing (DAS) is widely recognized as a new technology to replace conventional geophones for the acquisition of seismic data. However, the collected data often contain a lot of coupled noise due to cable slapping and ringing along the borehole casing, which brings great difficulties to the interpretation of seismic data. The existing conventional coupled noise reduction methods often need to estimate the parameters of each coupled noise (such as amplitude, noise period, attenuation coefficient, etc.), which takes a lot of time and cannot meet the requirements for large-data-volume DAS seismic data processing. In addition, some deep learning-based denoising methods lack detailed analysis on coupled noise and have problems in the construction of training sets, resulting in insufficient generalization ability of the denoising model. To solve these problems, we propose a coupled noise reduction method based on the convolutional neural network (CNN). The proposed method does not need to estimate the parameters of coupled noise, and the denoising process is more convenient and efficient. In addition, through the analysis of DAS seismic data, we also construct a training set for coupled noise reduction using real data and synthetic data. The denoising results of both synthetic data and field data show that the proposed method can effectively reduce the coupled noise in DAS seismic data, and the effective signal has almost no energy loss. After processing, the signal affected by coupled noise becomes clear and continuous, providing high-quality data support for subsequent interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小布丁发布了新的文献求助10
1秒前
alice发布了新的文献求助20
2秒前
2秒前
无可无不可完成签到,获得积分10
3秒前
Darius完成签到,获得积分10
3秒前
3秒前
桐桐应助kun3812采纳,获得10
3秒前
成永福发布了新的文献求助10
4秒前
ball发布了新的文献求助10
4秒前
ww完成签到,获得积分10
4秒前
4秒前
星辰大海应助扶溪筠采纳,获得10
4秒前
华仔应助ysw采纳,获得10
5秒前
5秒前
6秒前
6秒前
俏皮的短靴完成签到,获得积分10
7秒前
chen发布了新的文献求助10
7秒前
云朵0810完成签到,获得积分10
7秒前
8秒前
李热热给李热热的求助进行了留言
8秒前
8秒前
haibing发布了新的文献求助10
9秒前
共享精神应助旷意采纳,获得10
10秒前
10秒前
10秒前
lisier完成签到,获得积分10
10秒前
10秒前
10秒前
ball完成签到,获得积分10
10秒前
11秒前
搜集达人应助碧蓝一德采纳,获得10
11秒前
机智向松完成签到,获得积分10
12秒前
12秒前
jaytotti发布了新的文献求助10
13秒前
keyangou087发布了新的文献求助10
13秒前
14秒前
追寻的机器猫完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351701
求助须知:如何正确求助?哪些是违规求助? 4484725
关于积分的说明 13960182
捐赠科研通 4384369
什么是DOI,文献DOI怎么找? 2408910
邀请新用户注册赠送积分活动 1401467
关于科研通互助平台的介绍 1374968