Coupled Noise Reduction in Distributed Acoustic Sensing Seismic Data Based on Convolutional Neural Network

计算机科学 降噪 噪音(视频) 检波器 卷积神经网络 噪声测量 数据集 人工智能 语音识别 地震学 地质学 图像(数学)
作者
Yuxing Zhao,Yue Li,Ning Wu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:13
标识
DOI:10.1109/lgrs.2022.3144421
摘要

Distributed acoustic sensing (DAS) is widely recognized as a new technology to replace conventional geophones for the acquisition of seismic data. However, the collected data often contain a lot of coupled noise due to cable slapping and ringing along the borehole casing, which brings great difficulties to the interpretation of seismic data. The existing conventional coupled noise reduction methods often need to estimate the parameters of each coupled noise (such as amplitude, noise period, attenuation coefficient, etc.), which takes a lot of time and cannot meet the requirements for large-data-volume DAS seismic data processing. In addition, some deep learning-based denoising methods lack detailed analysis on coupled noise and have problems in the construction of training sets, resulting in insufficient generalization ability of the denoising model. To solve these problems, we propose a coupled noise reduction method based on the convolutional neural network (CNN). The proposed method does not need to estimate the parameters of coupled noise, and the denoising process is more convenient and efficient. In addition, through the analysis of DAS seismic data, we also construct a training set for coupled noise reduction using real data and synthetic data. The denoising results of both synthetic data and field data show that the proposed method can effectively reduce the coupled noise in DAS seismic data, and the effective signal has almost no energy loss. After processing, the signal affected by coupled noise becomes clear and continuous, providing high-quality data support for subsequent interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaxia发布了新的文献求助10
刚刚
路灯发布了新的文献求助10
1秒前
蓝波酱完成签到,获得积分20
1秒前
2秒前
2秒前
搜集达人应助bbdx采纳,获得10
3秒前
5秒前
小沐完成签到,获得积分10
5秒前
nana完成签到,获得积分10
7秒前
激动的八宝粥完成签到 ,获得积分10
8秒前
8秒前
科研通AI6应助落寞的易绿采纳,获得10
9秒前
善学以致用应助jerry采纳,获得10
10秒前
CHENXIN532完成签到,获得积分10
10秒前
爱笑小笼包完成签到,获得积分10
11秒前
修仙中应助行毅文采纳,获得10
13秒前
14秒前
14秒前
Optimistic发布了新的文献求助10
16秒前
烟花应助等待的谷波采纳,获得10
16秒前
16秒前
18秒前
Leon Lai发布了新的文献求助10
19秒前
20秒前
张梦宇发布了新的文献求助10
21秒前
22秒前
22秒前
Akim应助Fan采纳,获得10
23秒前
24秒前
25秒前
俊逸香岚完成签到,获得积分10
25秒前
良陈美景奈何天完成签到 ,获得积分10
26秒前
HughWang发布了新的文献求助10
27秒前
李爱国应助尊敬的雪珍采纳,获得10
27秒前
英吉利25发布了新的文献求助10
28秒前
jerry发布了新的文献求助10
28秒前
28秒前
邱小七发布了新的文献求助10
29秒前
29秒前
30秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133536
求助须知:如何正确求助?哪些是违规求助? 4334655
关于积分的说明 13504255
捐赠科研通 4171630
什么是DOI,文献DOI怎么找? 2287267
邀请新用户注册赠送积分活动 1288167
关于科研通互助平台的介绍 1229009