Elucidating the Role of Hydrogen Bonds for Improved Mechanical Properties in a High-Performance Semiconducting Polymer

聚合物 材料科学 氢键 表面改性 共轭体系 极限抗拉强度 延展性(地球科学) 酰胺 分子间力 粘结强度 化学工程 高分子化学 复合材料 纳米技术 化学 有机化学 分子 胶粘剂 工程类 蠕动 图层(电子)
作者
Luke Galuska,Michael U. Ocheje,Zachary Ahmad,Simon Rondeau‐Gagné,Xiaodan Gu
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (5): 2259-2267 被引量:38
标识
DOI:10.1021/acs.chemmater.1c04055
摘要

Incorporation of hydrogen bond moieties into the backbone or side chain of conjugated polymers is an effective strategy to enhance mechanical performance, facilitate morphological organization, and promote self-healing ability. However, the understanding of hydrogen bonds, particularly the effect of bond strength and directionality, on thermomechanical and optoelectronic performance is still in its infancy due to the competing influence of morphology, glass transition phenomena, and the measurement process itself. Here, we compare the influence of statistically incorporated amide and urea moieties on the mechanical properties of DPP-TVT parent polymers. We observed a profound difference in ductility; amide functionalization increases the strain at failure by over 100% relative to the pure DPP-TVT polymer, while urea functionalization results in a loss of strain at failure by 50%. This is attributed to the crystalline behavior of functionalized conjugated polymers that is promoted by intermolecular interactions of urea groups, which we elucidated via an in-depth investigation of the swelling, crystalline packing, thermal behavior, and strain-dependent charge transport. Furthermore, we employed a novel free-standing tensile test to validate our mechanical measurements supported on a water surface. Our results demonstrated that hydrogen bond moieties must be carefully chosen to achieve a delicate balance of morphological control and mechanical performance, as simply increasing the hydrogen bond strength can result in detrimental mechanical and electrical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助子车嘉懿采纳,获得10
刚刚
复杂寄文完成签到,获得积分10
刚刚
zkz发布了新的文献求助10
刚刚
迷途的羔羊完成签到 ,获得积分10
刚刚
111完成签到,获得积分10
1秒前
俏皮火完成签到 ,获得积分10
1秒前
闪闪的硬币完成签到 ,获得积分10
2秒前
Jenny发布了新的文献求助10
2秒前
眼睛大的乐儿完成签到,获得积分10
2秒前
哈呵嚯嘿呀完成签到,获得积分10
2秒前
独特觅翠完成签到,获得积分10
3秒前
zm完成签到,获得积分10
4秒前
mmddlj完成签到 ,获得积分10
4秒前
chenc完成签到,获得积分10
4秒前
Morning完成签到,获得积分20
4秒前
4秒前
姐姐发布了新的文献求助10
4秒前
JIASHOUSHOU完成签到,获得积分10
4秒前
童年的秋千完成签到,获得积分10
4秒前
5秒前
HC完成签到,获得积分10
5秒前
小王发布了新的文献求助10
6秒前
lili完成签到,获得积分10
6秒前
段段完成签到,获得积分10
6秒前
6秒前
缄默完成签到,获得积分10
7秒前
阿萨德完成签到,获得积分10
7秒前
务实的语风完成签到,获得积分10
8秒前
刘慧12完成签到,获得积分10
9秒前
热心雁易完成签到,获得积分10
9秒前
9秒前
闪闪的正豪完成签到,获得积分10
9秒前
9秒前
leemix完成签到,获得积分10
9秒前
无语的惜芹完成签到 ,获得积分10
10秒前
搜集达人应助Morning采纳,获得10
10秒前
自觉悟空完成签到,获得积分10
10秒前
hubo完成签到,获得积分10
11秒前
lily_lin发布了新的文献求助10
11秒前
宁静致远应助1⑩采纳,获得20
11秒前
高分求助中
Exploring Mitochondrial Autophagy Dysregulation in Osteosarcoma: Its Implications for Prognosis and Targeted Therapy 4000
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Evolution 1100
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Research Methods for Sports Studies 1000
Gerard de Lairesse : an artist between stage and studio 670
Assessment of Ultrasonographic Measurement of Inferior Vena Cava Collapsibility Index in The Prediction of Hypotension Associated with Tourniquet Release in Total Knee Replacement Surgeries under Spinal Anesthesia 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 免疫学 病理 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2980543
求助须知:如何正确求助?哪些是违规求助? 2641657
关于积分的说明 7126719
捐赠科研通 2274727
什么是DOI,文献DOI怎么找? 1206623
版权声明 592045
科研通“疑难数据库(出版商)”最低求助积分说明 589520