EPPDA: An Efficient Privacy-Preserving Data Aggregation Federated Learning Scheme

计算机科学 上传 对手 方案(数学) 计算机安全 人工智能 机器学习 万维网 数学 数学分析
作者
Jingcheng Song,Weizheng Wang,Thippa Reddy Gadekallu,Jianyu Cao,Yining Liu
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (5): 3047-3057 被引量:84
标识
DOI:10.1109/tnse.2022.3153519
摘要

Federated learning (FL) is a kind of privacy-awaremachine learning, in which the machine learning models are trained on the users' side and then the model updates are transmitted to the server for aggregating. As the data owners need not upload their data, FL is a privacy-persevering machine learning model. However, FL is weak as it suffers from a reverse attack, in which an adversary can get users' data by analyzing the user uploaded model. Motivated by this, in this paper, based on the secret sharing, we design, an efficient privacy-preserving data aggregation mechanism for FL, to resist the reverse attack, which can aggregate users' trained models secretly without leaking the user's model. Moreover, EPPDA has efficient fault tolerance for the user disconnection. Even if a large number of users are disconnected when the protocol runs, EPPDA will execute normally. Analysis shows that the EPPDA can provide a sum of locally trained models to the server without leaking any single user's model. Moreover, adversary can not get any non-public information from the communication channel. Efficiency verification proves that the EPPDA not only protects users' privacy but also needs fewer computing and communication resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼问雁完成签到,获得积分10
刚刚
jin_strive完成签到,获得积分0
1秒前
小二郎应助ZY采纳,获得10
1秒前
小七发布了新的文献求助10
1秒前
今后应助大智采纳,获得10
1秒前
zx完成签到,获得积分10
1秒前
2秒前
提提在干嘛完成签到,获得积分10
3秒前
铜敢蒜发布了新的文献求助10
3秒前
黄康康发布了新的文献求助10
3秒前
sky完成签到,获得积分10
3秒前
舒适的天奇完成签到 ,获得积分10
3秒前
3秒前
Livvia完成签到,获得积分10
4秒前
4秒前
4秒前
简单的元珊完成签到,获得积分10
4秒前
科研通AI2S应助zhanghan采纳,获得10
4秒前
suliang完成签到,获得积分10
5秒前
y杨扬完成签到,获得积分10
6秒前
Aganlin发布了新的文献求助10
6秒前
科研通AI2S应助活泼山雁采纳,获得10
6秒前
幸福广山完成签到,获得积分10
7秒前
zch曹县66完成签到,获得积分10
7秒前
若水完成签到,获得积分20
7秒前
调皮的蓝天完成签到 ,获得积分10
7秒前
AKN完成签到,获得积分10
8秒前
franklylyly完成签到,获得积分10
8秒前
Luo完成签到,获得积分10
9秒前
杳鸢应助雨墨幻山采纳,获得10
10秒前
qyhl发布了新的文献求助10
11秒前
沉静的红酒完成签到,获得积分10
11秒前
11秒前
dreamode应助半夏采纳,获得10
11秒前
Jzhang完成签到,获得积分10
12秒前
甜蜜的振家完成签到,获得积分10
12秒前
舒心秋蝶完成签到,获得积分10
12秒前
大吴克发布了新的文献求助10
12秒前
机灵一兰完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450572
求助须知:如何正确求助?哪些是违规求助? 3046089
关于积分的说明 9004332
捐赠科研通 2734767
什么是DOI,文献DOI怎么找? 1500127
科研通“疑难数据库(出版商)”最低求助积分说明 693369
邀请新用户注册赠送积分活动 691542