A map of the Urals emotional perception (based on modern regional poetry)

悲伤 诗歌 惊喜 藐视 厌恶 感觉 愤怒 身份(音乐) 价值(数学) 心理学 文学类 美学 社会学 历史 艺术 社会心理学 机器学习 计算机科学
作者
Tatyana Semyan,Evgeny A. Smyshlyaev,Olga Babina,Svetlana Sheremetyeva
出处
期刊:Digital Scholarship in the Humanities [Oxford University Press]
卷期号:37 (4): 1223-1239 被引量:1
标识
DOI:10.1093/llc/fqac007
摘要

Abstract The study of emotional categories in the literary texts of contemporary regional authors and creating a map of the Urals emotional perception based on the data obtained with the Digital Humanities methods is believed to be of great value for solving an important scientific and socio-cultural problems of revealing local specifics and regional identity that faced the Russian society at the turn of the 20th and 21st centuries. For several decades, the modern Ural literature has been a striking socio-cultural phenomenon, numbering more than a hundred writers from different cities (Perm, Yekaterinburg, Chelyabinsk, etc.). One of the key features of the modern Ural poetry is the reflection of regional identity in literary texts. The poems of the Ural writers are full of local toponyms, images of the Urals’ industrial cities and unique nature, as well as of local myths. In this article, a wide range of emotional categories (such as surprise, fear, anger, disgust, joy, contempt, sadness, love, etc.) in modern poetry is investigated based on the emotional models by the American psychologists Robert Plutchik (Emotion: Theory, Research, and Experience, Vol. 1: Theories of Emotion. New York: Academic), Carroll Izard (Izard, C. E., 2012, The Psychology of Emotions. New York: Plenum), and Paul Ekman (Ekman, P., 2007, Emotions Revealed: Recognizing Faces and Feelings to Improve Communication and Emotional Life. New York: Holt Paperbacks). The purpose of the research is to discover what emotions prevail in modern poetic texts dedicated to the Ural region by analysing how literary works absorb and critically rethink the space of the Urals. A comprehensive research methodology is proposed that combines a qualitative study of the literary material and automated quantitative-digital analysis of corpus data with the subsequent visualization of the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明友安完成签到,获得积分10
刚刚
归未发布了新的文献求助10
1秒前
2秒前
Xiaohu完成签到,获得积分10
2秒前
高高的魔镜应助莫伊嫣采纳,获得10
2秒前
2秒前
2秒前
3秒前
KKIII发布了新的文献求助10
3秒前
yufanhui应助ies77采纳,获得50
3秒前
doocan完成签到,获得积分20
3秒前
4秒前
5秒前
5秒前
Glu发布了新的文献求助10
5秒前
白白发布了新的文献求助10
6秒前
6秒前
归未完成签到,获得积分10
8秒前
yufanhui应助ies77采纳,获得10
9秒前
酱攸完成签到,获得积分10
9秒前
MRzzzzz发布了新的文献求助30
10秒前
医平青云发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
奕初阳完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
奋斗的猪完成签到 ,获得积分10
13秒前
愉快无施发布了新的文献求助10
13秒前
14秒前
15秒前
不配.应助猪在海中游采纳,获得10
15秒前
15秒前
sherrycofe应助zzz采纳,获得10
15秒前
15秒前
15秒前
16秒前
聂学雨发布了新的文献求助10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135577
求助须知:如何正确求助?哪些是违规求助? 2786454
关于积分的说明 7777484
捐赠科研通 2442441
什么是DOI,文献DOI怎么找? 1298558
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847