A map of the Urals emotional perception (based on modern regional poetry)

悲伤 诗歌 惊喜 藐视 厌恶 感觉 愤怒 身份(音乐) 价值(数学) 心理学 文学类 美学 社会学 历史 艺术 社会心理学 机器学习 计算机科学
作者
Tatyana Semyan,Evgeny A. Smyshlyaev,Olga Babina,Svetlana Sheremetyeva
出处
期刊:Digital Scholarship in the Humanities [Oxford University Press]
卷期号:37 (4): 1223-1239 被引量:1
标识
DOI:10.1093/llc/fqac007
摘要

Abstract The study of emotional categories in the literary texts of contemporary regional authors and creating a map of the Urals emotional perception based on the data obtained with the Digital Humanities methods is believed to be of great value for solving an important scientific and socio-cultural problems of revealing local specifics and regional identity that faced the Russian society at the turn of the 20th and 21st centuries. For several decades, the modern Ural literature has been a striking socio-cultural phenomenon, numbering more than a hundred writers from different cities (Perm, Yekaterinburg, Chelyabinsk, etc.). One of the key features of the modern Ural poetry is the reflection of regional identity in literary texts. The poems of the Ural writers are full of local toponyms, images of the Urals’ industrial cities and unique nature, as well as of local myths. In this article, a wide range of emotional categories (such as surprise, fear, anger, disgust, joy, contempt, sadness, love, etc.) in modern poetry is investigated based on the emotional models by the American psychologists Robert Plutchik (Emotion: Theory, Research, and Experience, Vol. 1: Theories of Emotion. New York: Academic), Carroll Izard (Izard, C. E., 2012, The Psychology of Emotions. New York: Plenum), and Paul Ekman (Ekman, P., 2007, Emotions Revealed: Recognizing Faces and Feelings to Improve Communication and Emotional Life. New York: Holt Paperbacks). The purpose of the research is to discover what emotions prevail in modern poetic texts dedicated to the Ural region by analysing how literary works absorb and critically rethink the space of the Urals. A comprehensive research methodology is proposed that combines a qualitative study of the literary material and automated quantitative-digital analysis of corpus data with the subsequent visualization of the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万木发布了新的文献求助10
刚刚
光电效应完成签到,获得积分10
1秒前
Chemistry发布了新的文献求助10
2秒前
2秒前
2秒前
小熊猫完成签到,获得积分10
5秒前
VanishX发布了新的文献求助10
5秒前
吴雪完成签到 ,获得积分10
6秒前
7秒前
吴晨曦完成签到 ,获得积分10
8秒前
yyc发布了新的文献求助10
11秒前
11秒前
luan完成签到,获得积分10
12秒前
xin完成签到,获得积分10
14秒前
佩奇666发布了新的文献求助10
16秒前
16秒前
姜峰完成签到,获得积分10
17秒前
飞天奶酪完成签到 ,获得积分10
18秒前
聆听雨完成签到,获得积分10
18秒前
木子水告完成签到,获得积分10
18秒前
威武的凡桃完成签到,获得积分10
22秒前
22秒前
于于小鱼9发布了新的文献求助10
22秒前
开放沛柔完成签到 ,获得积分10
23秒前
andrew应助111采纳,获得10
23秒前
汉堡包应助sdl采纳,获得10
23秒前
25秒前
禤禤完成签到,获得积分10
28秒前
明理的盼山完成签到,获得积分10
28秒前
852应助梦在彼岸采纳,获得10
28秒前
30秒前
小菜完成签到 ,获得积分10
30秒前
SciGPT应助科研小白采纳,获得10
31秒前
燕燕于飞发布了新的文献求助10
31秒前
鱼鱼苹果干完成签到 ,获得积分10
31秒前
YHL完成签到 ,获得积分10
33秒前
34秒前
sdl发布了新的文献求助10
35秒前
35秒前
我是老大应助zhouleiwang采纳,获得10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730337
求助须知:如何正确求助?哪些是违规求助? 3275096
关于积分的说明 9991049
捐赠科研通 2990706
什么是DOI,文献DOI怎么找? 1641231
邀请新用户注册赠送积分活动 779610
科研通“疑难数据库(出版商)”最低求助积分说明 748331