A map of the Urals emotional perception (based on modern regional poetry)

悲伤 诗歌 惊喜 藐视 厌恶 感觉 愤怒 身份(音乐) 价值(数学) 心理学 文学类 美学 社会学 历史 艺术 社会心理学 机器学习 计算机科学
作者
Tatyana Semyan,Evgeny A. Smyshlyaev,Olga Babina,Svetlana Sheremetyeva
出处
期刊:Digital Scholarship in the Humanities [Oxford University Press]
卷期号:37 (4): 1223-1239 被引量:1
标识
DOI:10.1093/llc/fqac007
摘要

Abstract The study of emotional categories in the literary texts of contemporary regional authors and creating a map of the Urals emotional perception based on the data obtained with the Digital Humanities methods is believed to be of great value for solving an important scientific and socio-cultural problems of revealing local specifics and regional identity that faced the Russian society at the turn of the 20th and 21st centuries. For several decades, the modern Ural literature has been a striking socio-cultural phenomenon, numbering more than a hundred writers from different cities (Perm, Yekaterinburg, Chelyabinsk, etc.). One of the key features of the modern Ural poetry is the reflection of regional identity in literary texts. The poems of the Ural writers are full of local toponyms, images of the Urals’ industrial cities and unique nature, as well as of local myths. In this article, a wide range of emotional categories (such as surprise, fear, anger, disgust, joy, contempt, sadness, love, etc.) in modern poetry is investigated based on the emotional models by the American psychologists Robert Plutchik (Emotion: Theory, Research, and Experience, Vol. 1: Theories of Emotion. New York: Academic), Carroll Izard (Izard, C. E., 2012, The Psychology of Emotions. New York: Plenum), and Paul Ekman (Ekman, P., 2007, Emotions Revealed: Recognizing Faces and Feelings to Improve Communication and Emotional Life. New York: Holt Paperbacks). The purpose of the research is to discover what emotions prevail in modern poetic texts dedicated to the Ural region by analysing how literary works absorb and critically rethink the space of the Urals. A comprehensive research methodology is proposed that combines a qualitative study of the literary material and automated quantitative-digital analysis of corpus data with the subsequent visualization of the results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wywy发布了新的文献求助10
刚刚
充电宝应助我又可以了采纳,获得10
1秒前
Jasper应助123采纳,获得10
1秒前
loong发布了新的文献求助10
1秒前
痴情的萃发布了新的文献求助10
2秒前
SDM完成签到 ,获得积分10
2秒前
科研通AI6应助66采纳,获得10
2秒前
Joanne完成签到 ,获得积分10
3秒前
科目三应助Certainty橙子采纳,获得10
3秒前
稳重迎曼完成签到,获得积分20
4秒前
无花果应助swx采纳,获得10
5秒前
小cc完成签到 ,获得积分10
6秒前
yzr发布了新的文献求助10
6秒前
高高完成签到,获得积分10
6秒前
所所应助从容苡采纳,获得10
6秒前
00完成签到,获得积分10
6秒前
loong完成签到,获得积分10
7秒前
Shen完成签到,获得积分10
7秒前
8秒前
田様应助普外科老白采纳,获得10
8秒前
闪闪的皮皮虾完成签到,获得积分10
8秒前
10秒前
ann7发布了新的文献求助30
10秒前
七yy发布了新的文献求助10
10秒前
科研通AI6应助KanmenRider采纳,获得10
11秒前
思哲范完成签到,获得积分10
11秒前
斯文明杰发布了新的文献求助10
12秒前
科研通AI6应助15735802374采纳,获得10
12秒前
12秒前
望星星的海豚完成签到,获得积分10
13秒前
研友_VZG7GZ应助西米采纳,获得10
13秒前
Akim应助kjwu采纳,获得10
13秒前
13秒前
小二郎应助不安太阳采纳,获得10
13秒前
14秒前
14秒前
14秒前
14秒前
深情安青应助无情的宛儿采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643881
求助须知:如何正确求助?哪些是违规求助? 4762227
关于积分的说明 15022609
捐赠科研通 4802076
什么是DOI,文献DOI怎么找? 2567320
邀请新用户注册赠送积分活动 1525012
关于科研通互助平台的介绍 1484514