Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers

代金券 生产力 业务 订单(交换) 匹配(统计) 营销 集合(抽象数据类型) 政策组合 产业组织 公共经济学 经济 财务 经济增长 会计 计算机科学 凯恩斯经济学 统计 数学 程序设计语言
作者
Annalisa Caloffi,Marzia Freo,Stefano Ghinoi,Marco Mariani,Federica Rossi
出处
期刊:Research Policy [Elsevier]
卷期号:51 (6): 104535-104535 被引量:27
标识
DOI:10.1016/j.respol.2022.104535
摘要

While innovation policy mixes combining several policy instruments have been advocated as a response to complex problems, there is very little evidence of their effectiveness compared to that of individual instruments. By considering a set of Italian regional policy programmes implemented in 2011–2014, we analysed a policy mix composed of: (i) technology and innovation advisory services, the aim of which is to help small and medium enterprises (SMEs) to gain a better awareness of their innovation needs and of how to address them; and (ii) innovation vouchers, which are used to subsidise SME purchases of knowledge-intensive services. To draw causal inferences on their differential effectiveness, we adopted a propensity-score-matching approach extended to multiple treatment levels. We found that advisory services are more effective than innovation vouchers and as effective as policy mixes in increasing SME propensity to innovate and engage in R&D collaborations. Conversely, policy mixes are more effective than each individual instrument in increasing productivity. Hence, merely providing SMEs with technology and innovation advice is not sufficient to elicit productivity improvements; SMEs also need to act on such advice by working with external providers of knowledge-intensive services in order to implement efficiency-producing changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Jay_L采纳,获得10
1秒前
呐呐呐发布了新的文献求助10
1秒前
1秒前
1秒前
CodeCraft应助美好的莫英采纳,获得10
1秒前
假茂茂发布了新的文献求助30
1秒前
执着的海完成签到,获得积分10
1秒前
我是老大应助南辞采纳,获得10
1秒前
2秒前
潘青春发布了新的文献求助10
2秒前
芷莯发布了新的文献求助10
2秒前
3秒前
LLY完成签到,获得积分10
3秒前
程晓研完成签到 ,获得积分10
3秒前
杨建明发布了新的文献求助10
4秒前
4秒前
4秒前
小小完成签到,获得积分10
4秒前
wa完成签到,获得积分10
5秒前
葛一豪发布了新的文献求助30
5秒前
5秒前
长天留影完成签到,获得积分10
6秒前
6秒前
迷人荷花完成签到,获得积分10
6秒前
崔宏玺完成签到,获得积分10
6秒前
风味土豆片完成签到,获得积分10
6秒前
nbbyysnbb发布了新的文献求助10
7秒前
7秒前
Ava应助shanage采纳,获得10
7秒前
闪闪沂完成签到,获得积分10
7秒前
7秒前
小小发布了新的文献求助10
7秒前
7秒前
小困困朱完成签到,获得积分10
7秒前
8秒前
8秒前
开朗磬完成签到 ,获得积分10
8秒前
眼睛大的松鼠完成签到 ,获得积分10
8秒前
孙美娜完成签到,获得积分10
9秒前
快乐的一刀完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483374
求助须知:如何正确求助?哪些是违规求助? 4584081
关于积分的说明 14394500
捐赠科研通 4513704
什么是DOI,文献DOI怎么找? 2473645
邀请新用户注册赠送积分活动 1459635
关于科研通互助平台的介绍 1433108