MC-GCN: A Multi-Scale Contrastive Graph Convolutional Network for Unconstrained Face Recognition With Image Sets

计算机科学 图形 模式识别(心理学) 人工智能 卷积神经网络 面部识别系统 面子(社会学概念) 集合(抽象数据类型) 计算机视觉 理论计算机科学 社会科学 社会学 程序设计语言
作者
Xiao Shi,Xiujuan Chai,Jiake Xie,Tan Sun
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3046-3055 被引量:10
标识
DOI:10.1109/tip.2022.3163851
摘要

In this paper, a Multi-scale Contrastive Graph Convolutional Network (MC-GCN) method is proposed for unconstrained face recognition with image sets, which takes a set of media (orderless images and videos) as a face subject instead of single media (an image or video). Due to factors such as illumination, posture, media source, etc., there are huge intra-set variances in a face set, and the importance of different face prototypes varies considerably. How to model the attention mechanism according to the relationship between prototypes or images in a set is the main content of this paper. In this work, we formulate a framework based on graph convolutional network (GCN), which considers face prototypes as nodes to build relations. Specifically, we first present a multi-scale graph module to learn the relationship between prototypes at multiple scales. Moreover, a Contrastive Graph Convolutional (CGC) block is introduced to build attention control model, which focuses on those frames with similar prototypes (contrastive information) between pair of sets instead of simply evaluating the frame quality. The experiments on IJB-A, YouTube Face, and an animal face dataset clearly demonstrate that our proposed MC-GCN outperforms the state-of-the-art methods significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
棉花完成签到 ,获得积分10
刚刚
李伟完成签到,获得积分10
1秒前
1秒前
frank完成签到,获得积分10
1秒前
生动的战斗机完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
王康发布了新的文献求助10
4秒前
wanci应助Mss采纳,获得10
5秒前
Jasper应助棋士采纳,获得10
5秒前
5秒前
GCD完成签到,获得积分10
5秒前
6秒前
渔夫发布了新的文献求助10
6秒前
6秒前
张艾宇发布了新的文献求助10
7秒前
somin应助米十二采纳,获得10
7秒前
7秒前
十字勋章完成签到,获得积分10
7秒前
8秒前
9秒前
整齐雁芙完成签到,获得积分10
9秒前
9秒前
ffff发布了新的文献求助10
9秒前
菰蒲发布了新的文献求助10
9秒前
10秒前
SS2D发布了新的文献求助10
10秒前
10秒前
草莓奶冻完成签到,获得积分10
10秒前
11秒前
合适的芸遥完成签到,获得积分10
11秒前
11秒前
星辰大海应助laissez_fairy采纳,获得10
11秒前
Roman完成签到,获得积分10
11秒前
xiangoak发布了新的文献求助10
12秒前
orixero应助十二采纳,获得20
12秒前
在水一方应助整齐雁芙采纳,获得10
12秒前
领导范儿应助踏实的烙采纳,获得10
13秒前
静雯发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953878
求助须知:如何正确求助?哪些是违规求助? 3499920
关于积分的说明 11097238
捐赠科研通 3230331
什么是DOI,文献DOI怎么找? 1785920
邀请新用户注册赠送积分活动 869697
科研通“疑难数据库(出版商)”最低求助积分说明 801572