MC-GCN: A Multi-Scale Contrastive Graph Convolutional Network for Unconstrained Face Recognition With Image Sets

计算机科学 图形 模式识别(心理学) 人工智能 卷积神经网络 面部识别系统 面子(社会学概念) 集合(抽象数据类型) 计算机视觉 理论计算机科学 社会科学 社会学 程序设计语言
作者
Xiao Shi,Xiujuan Chai,Jiake Xie,Tan Sun
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3046-3055 被引量:10
标识
DOI:10.1109/tip.2022.3163851
摘要

In this paper, a Multi-scale Contrastive Graph Convolutional Network (MC-GCN) method is proposed for unconstrained face recognition with image sets, which takes a set of media (orderless images and videos) as a face subject instead of single media (an image or video). Due to factors such as illumination, posture, media source, etc., there are huge intra-set variances in a face set, and the importance of different face prototypes varies considerably. How to model the attention mechanism according to the relationship between prototypes or images in a set is the main content of this paper. In this work, we formulate a framework based on graph convolutional network (GCN), which considers face prototypes as nodes to build relations. Specifically, we first present a multi-scale graph module to learn the relationship between prototypes at multiple scales. Moreover, a Contrastive Graph Convolutional (CGC) block is introduced to build attention control model, which focuses on those frames with similar prototypes (contrastive information) between pair of sets instead of simply evaluating the frame quality. The experiments on IJB-A, YouTube Face, and an animal face dataset clearly demonstrate that our proposed MC-GCN outperforms the state-of-the-art methods significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助fuje采纳,获得10
刚刚
jiayou彭完成签到 ,获得积分10
刚刚
科目三应助醉烟雨采纳,获得20
1秒前
2秒前
闲谈落月完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得30
4秒前
英姑应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
听说你还在搞什么原创完成签到 ,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
蟒玉朝天发布了新的文献求助10
6秒前
6秒前
qoq发布了新的文献求助10
7秒前
Orange应助烟熏柿子采纳,获得10
7秒前
7秒前
7秒前
热爱zx的小陈完成签到,获得积分10
8秒前
8秒前
8秒前
happy lu完成签到,获得积分10
8秒前
乔恩完成签到,获得积分10
9秒前
沉静篮球完成签到 ,获得积分10
10秒前
QYW发布了新的文献求助10
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023