接触角
乳状液
化学工程
膜
材料科学
间苯二酚
微型多孔材料
疏水二氧化硅
化学气相沉积
复合数
化学
复合材料
有机化学
纳米技术
生物化学
工程类
作者
Justin K. George,Nishith Verma
标识
DOI:10.1016/j.memsci.2022.120538
摘要
A super-hydrophobic/super-oleophilic carbon nanofibers (CNFs)-embedded resorcinol-formaldehyde (RF)-activated carbon fiber (ACF) composite membrane is synthesized for the efficient removal of water from a water-oil emulsion. Chemical vapor deposition (CVD) with copper oxide (CuO) as the catalyst is used to form CNFs for the first time over an ACF-supported RF polymeric layer. The prepared CuO–CNF/RF-ACF membrane was physicochemically characterized as super-hydrophobic/super-oleophilic (water contact angle 157° and oil contact angle 0°), attributed to the high surface roughness (Ra ∼55.56 nm) and graphitic content of the CNFs. The membrane had an asymmetric internal structure with a hydrophobic CNF-decorated microporous surface, which facilitated oil to pass and rejection of water droplets from the emulsion. The dead-end separation test data indicated a flux of 426 ± 20 L/m2-h with the water removal efficiency of 99.7% and the permeate having water droplets with the size range of 37–78 nm when tested against a water-oil emulsion of 10% (v/v) comprising 700–1700 nm sized water droplets. The physicochemical characterization, including the tests under harsh conditions showed the material mechanically, thermally, and chemically stable. The method described in this study to synthesize CuO–CNF/RF-ACF membrane is facile and has a potential for scale-up.
科研通智能强力驱动
Strongly Powered by AbleSci AI