细胞骨架
脐静脉
细胞生物学
细胞培养
糖萼
剪应力
内皮
微流控
细胞凋亡
内皮干细胞
机械转化
生物
化学
作者
Laura Locatelli,Mehdi Inglebert,Roberta Scrimieri,Priti Kumari Sinha,Gian Vincenzo Zuccotti,Paolo Milani,Lionel Bureau,Chaouqi Misbah,Jeanette A M Maier
标识
DOI:10.1096/fj.202100914r
摘要
Several studies have demonstrated the role of high glucose in promoting endothelial dysfunction utilizing traditional two-dimensional (2D) culture systems, which, however, do not replicate the complex organization of the endothelium within a vessel constantly exposed to flow. Here we describe the response to high glucose of micro- and macro-vascular human endothelial cells (EC) cultured in biomimetic microchannels fabricated through soft lithography and perfused to generate shear stress. In 3D macrovascular EC exposed to a shear stress of 0.4 Pa respond to high glucose with cytoskeletal remodeling and alterations in cell shape. Under the same experimental conditions, these effects are more pronounced in microvascular cells that show massive cytoskeletal disassembly and apoptosis after culture in high glucose. However, when exposed to a shear stress of 4 Pa, which is physiological in the microvasculature, human dermal microvascular endothelial cells (HDMEC) show alterations of the cytoskeleton but no apoptosis. This result emphasizes the sensitivity of HDMEC to different regimens of flow. No significant variations in the thickness of glycocalyx were detected in both human endothelial cells from the umbilical vein and HDMEC exposed to high glucose in 3D, whereas clear differences emerge between cells cultured in static 2D versus microfluidic channels. We conclude that culture in microfluidic microchannels unveils unique insights into endothelial dysfunction by high glucose.
科研通智能强力驱动
Strongly Powered by AbleSci AI