Artificial intelligence applications for sustainable solid waste management practices in Australia: A systematic review

重新使用 城市固体废物 工程类 资源(消歧) 固体废物管理 计算机科学 废物管理 计算机网络
作者
Lynda Andeobu,Santoso Wibowo,Srimannarayana Grandhi
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:834: 155389-155389 被引量:112
标识
DOI:10.1016/j.scitotenv.2022.155389
摘要

Solid waste generation and its impact on human health and the environment have long been a matter of concern for governments across the world. In recent years, there has been increasing emphasis on resource recovery (reusing, recycling and extracting energy from waste) using more advanced approaches such as artificial intelligence (AI) in Australia. AI is a powerful technology that is increasingly gaining popularity and application in various fields. The adoption of AI techniques offers alternative innovative approaches to solid waste management (SWM). Although there are previous studies on AI technologies and SWM, no study has assessed the adoption of AI applications in solving the diverse SWM problems for achieving sustainable waste management in Australia. Moreover, there are inconsistencies and a lack of awareness on how AI technologies function in relation to their application to SWM. This study examines the application of AI technologies in various areas of SWM (generation, sorting, collection, vehicle routing, treatment, disposal and waste management planning) to enhance sustainable waste management practices in Australia. To achieve the aims of this study, prior studies from 2005 to 2021 from various databases are collected and analyzed. The study focuses on the adoption of AI applications on SWM, compares the performance of AI applications, explores the benefits and challenges, and provides best practice recommendations on how resource efficiency can be optimized to improve economic, environmental and social outcomes. This study found that AI-based models have better prediction abilities when compared to other models used in forecasting solid waste generation and recycling. Findings show that waste generation in Australia has been steadily increasing and requires upgraded and improved recovery infrastructure and the appropriate adoption of AI technologies to enhance sustainable SWM. Australia's adoption of AI recycling technologies would benefit from a national approach that seeks consistency across jurisdictions, while catering for regional differences. This study will benefit researchers, governments, policy-makers, municipalities and other waste management organizations to increase current recycling rates, eliminate the need for manual labor, reduce costs, maximize efficiency, and transform the way we approach the management of solid waste.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
一颗星完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
小张发布了新的文献求助10
3秒前
4秒前
完美世界应助IP41320采纳,获得10
5秒前
狛枝凪斗完成签到,获得积分10
5秒前
5秒前
5秒前
彭于晏应助雀斑采纳,获得10
6秒前
Zhang发布了新的文献求助10
6秒前
zoe666发布了新的文献求助50
6秒前
呀呀完成签到,获得积分20
8秒前
狛枝凪斗发布了新的文献求助10
8秒前
公主不爱说话完成签到,获得积分10
9秒前
缓慢的败完成签到,获得积分20
10秒前
天天快乐应助123采纳,获得10
10秒前
passion发布了新的文献求助30
11秒前
huma应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
Czd发布了新的文献求助10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
doctor2023完成签到,获得积分10
12秒前
MXene应助科研通管家采纳,获得20
12秒前
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
huma应助科研通管家采纳,获得10
13秒前
MXene应助科研通管家采纳,获得20
13秒前
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664331
求助须知:如何正确求助?哪些是违规求助? 3224444
关于积分的说明 9757422
捐赠科研通 2934339
什么是DOI,文献DOI怎么找? 1606816
邀请新用户注册赠送积分活动 758829
科研通“疑难数据库(出版商)”最低求助积分说明 735012