A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility

材料科学 延展性(地球科学) 位错 合金 体积分数 叠加断层 极限抗拉强度 降水 高熵合金 复合材料 结构材料 冶金 蠕动 物理 气象学
作者
Yongkun Mu,Lunhua He,Sihao Deng,Yuefei Jia,Yandong Jia,Gang Wang,Qijie Zhai,Peter K. Liaw,C.T. Liu
出处
期刊:Acta Materialia [Elsevier]
卷期号:232: 117975-117975 被引量:173
标识
DOI:10.1016/j.actamat.2022.117975
摘要

The introduction of dislocations and precipitates has proven to be the effective methods to improve the mechanical properties of metallic materials and break strength-ductility trade-off. However, it is difficult to obtain a suitable combination of both strategies in the metal materials, that is, the coexistence of high-density dislocations and high-volume-fraction precipitates. Here, utilizing a three-dimensional (3D) printing technique, we have successfully achieved a combination of high-density dislocation structures and high-volume-fraction ductile nano-precipitates in a high-entropy alloy (HEA). This 3D-printed HEA, with a novelty dislocation-precipitate skeleton (DPS) architecture and high-density ductile nano-precipitations wrapped in the DPS, has an ultra-high tensile strength of ∼ 1.8 GPa together with the maximum elongation of ∼ 16%. The ultra-high strength mainly comes from dislocation-precipitation synergistic strengthening, while the large ductility mainly originates from an evolution of multiple stacking fault (SF) structures. The DPS can not only slow down the dislocation movement during the strain process without completely hindering its motion, but more importantly, the DPS still has good structural stability during the deformation, which avoids any premature failure due to stress concentrations at the boundary. The DPS formation promotes the development of the metal-based 3D printing technique in the preparation of the high-performance materials, and it can provide an efficient pathway for further enhancement of the alloy properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真之桃完成签到,获得积分10
刚刚
1秒前
chenxi3099完成签到,获得积分10
1秒前
crazy发布了新的文献求助200
1秒前
qiu完成签到,获得积分10
2秒前
gcy发布了新的文献求助10
3秒前
乔迪完成签到,获得积分10
4秒前
haha完成签到 ,获得积分10
5秒前
Backto1998完成签到,获得积分10
5秒前
充电宝应助冷艳的鸣凤采纳,获得10
6秒前
6秒前
蚂蚁工人发布了新的文献求助10
6秒前
6秒前
puhong zhang发布了新的文献求助20
7秒前
grzzz完成签到,获得积分10
7秒前
7秒前
8秒前
chentianhui完成签到 ,获得积分10
8秒前
萧白竹发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
初入茅庐的科研萌新完成签到,获得积分10
10秒前
10秒前
tt完成签到,获得积分10
11秒前
天天快乐应助大力帽子采纳,获得10
12秒前
12秒前
ShiBoSong发布了新的文献求助10
13秒前
蚂蚁工人完成签到,获得积分10
14秒前
15秒前
believe发布了新的文献求助10
16秒前
齐济关注了科研通微信公众号
16秒前
云隐完成签到,获得积分10
16秒前
16秒前
tkxfy完成签到,获得积分10
16秒前
gcy完成签到,获得积分10
17秒前
17秒前
puhong zhang完成签到,获得积分10
17秒前
19秒前
勤奋火龙果完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717887
求助须知:如何正确求助?哪些是违规求助? 5248869
关于积分的说明 15283627
捐赠科研通 4867961
什么是DOI,文献DOI怎么找? 2613978
邀请新用户注册赠送积分活动 1563880
关于科研通互助平台的介绍 1521369