A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility

材料科学 延展性(地球科学) 位错 合金 体积分数 叠加断层 极限抗拉强度 降水 高熵合金 复合材料 结构材料 冶金 蠕动 物理 气象学
作者
Yongkun Mu,Lunhua He,Sihao Deng,Yuefei Jia,Yandong Jia,Gang Wang,Qijie Zhai,Peter K. Liaw,C.T. Liu
出处
期刊:Acta Materialia [Elsevier]
卷期号:232: 117975-117975 被引量:173
标识
DOI:10.1016/j.actamat.2022.117975
摘要

The introduction of dislocations and precipitates has proven to be the effective methods to improve the mechanical properties of metallic materials and break strength-ductility trade-off. However, it is difficult to obtain a suitable combination of both strategies in the metal materials, that is, the coexistence of high-density dislocations and high-volume-fraction precipitates. Here, utilizing a three-dimensional (3D) printing technique, we have successfully achieved a combination of high-density dislocation structures and high-volume-fraction ductile nano-precipitates in a high-entropy alloy (HEA). This 3D-printed HEA, with a novelty dislocation-precipitate skeleton (DPS) architecture and high-density ductile nano-precipitations wrapped in the DPS, has an ultra-high tensile strength of ∼ 1.8 GPa together with the maximum elongation of ∼ 16%. The ultra-high strength mainly comes from dislocation-precipitation synergistic strengthening, while the large ductility mainly originates from an evolution of multiple stacking fault (SF) structures. The DPS can not only slow down the dislocation movement during the strain process without completely hindering its motion, but more importantly, the DPS still has good structural stability during the deformation, which avoids any premature failure due to stress concentrations at the boundary. The DPS formation promotes the development of the metal-based 3D printing technique in the preparation of the high-performance materials, and it can provide an efficient pathway for further enhancement of the alloy properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助绿狗玩偶采纳,获得10
1秒前
1秒前
lwj完成签到,获得积分10
2秒前
萱萱完成签到,获得积分10
3秒前
黑桃Q完成签到,获得积分10
3秒前
4秒前
天天快乐应助soul采纳,获得10
4秒前
王蕊完成签到,获得积分20
5秒前
田様应助郗文佳采纳,获得10
5秒前
7秒前
FashionBoy应助奔跑的蜗牛采纳,获得10
7秒前
7秒前
疯狂的水杯完成签到,获得积分20
8秒前
我没钱完成签到,获得积分10
9秒前
FashionBoy应助乐观笑南采纳,获得10
9秒前
9秒前
10秒前
xzy998应助郗文佳采纳,获得10
10秒前
松花香菜子发布了新的文献求助500
11秒前
Vegeta完成签到 ,获得积分10
12秒前
111发布了新的文献求助20
13秒前
13秒前
栗子糖发布了新的文献求助10
13秒前
绿狗玩偶完成签到,获得积分20
14秒前
困屁鱼发布了新的文献求助10
16秒前
朱元发完成签到,获得积分10
17秒前
18秒前
酥山完成签到,获得积分10
18秒前
涵泽完成签到,获得积分10
19秒前
19秒前
酷炫的毛巾应助李幺幺采纳,获得10
19秒前
俏皮的老城完成签到 ,获得积分10
21秒前
Mandy完成签到,获得积分10
21秒前
22秒前
李健应助cookie486采纳,获得10
22秒前
优秀真发布了新的文献求助30
23秒前
24秒前
昭昭如我愿完成签到,获得积分10
24秒前
25秒前
十二完成签到 ,获得积分10
26秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379616
求助须知:如何正确求助?哪些是违规求助? 4503889
关于积分的说明 14016933
捐赠科研通 4412719
什么是DOI,文献DOI怎么找? 2423913
邀请新用户注册赠送积分活动 1416795
关于科研通互助平台的介绍 1394372