A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility

材料科学 延展性(地球科学) 位错 合金 体积分数 叠加断层 极限抗拉强度 降水 高熵合金 复合材料 结构材料 冶金 蠕动 物理 气象学
作者
Yongkun Mu,Lunhua He,Sihao Deng,Yuefei Jia,Yandong Jia,Gang Wang,Qijie Zhai,Peter K. Liaw,C.T. Liu
出处
期刊:Acta Materialia [Elsevier]
卷期号:232: 117975-117975 被引量:173
标识
DOI:10.1016/j.actamat.2022.117975
摘要

The introduction of dislocations and precipitates has proven to be the effective methods to improve the mechanical properties of metallic materials and break strength-ductility trade-off. However, it is difficult to obtain a suitable combination of both strategies in the metal materials, that is, the coexistence of high-density dislocations and high-volume-fraction precipitates. Here, utilizing a three-dimensional (3D) printing technique, we have successfully achieved a combination of high-density dislocation structures and high-volume-fraction ductile nano-precipitates in a high-entropy alloy (HEA). This 3D-printed HEA, with a novelty dislocation-precipitate skeleton (DPS) architecture and high-density ductile nano-precipitations wrapped in the DPS, has an ultra-high tensile strength of ∼ 1.8 GPa together with the maximum elongation of ∼ 16%. The ultra-high strength mainly comes from dislocation-precipitation synergistic strengthening, while the large ductility mainly originates from an evolution of multiple stacking fault (SF) structures. The DPS can not only slow down the dislocation movement during the strain process without completely hindering its motion, but more importantly, the DPS still has good structural stability during the deformation, which avoids any premature failure due to stress concentrations at the boundary. The DPS formation promotes the development of the metal-based 3D printing technique in the preparation of the high-performance materials, and it can provide an efficient pathway for further enhancement of the alloy properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助佘余采纳,获得10
1秒前
田様应助正直芫采纳,获得10
2秒前
四糸乃完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
董冬冬应助tengfei采纳,获得10
4秒前
4秒前
鹤九完成签到,获得积分10
4秒前
JamesPei应助科研启动采纳,获得10
4秒前
完美世界应助sissisue采纳,获得10
5秒前
hh完成签到,获得积分20
6秒前
7秒前
瞿绝悟发布了新的文献求助30
7秒前
专注采枫完成签到,获得积分10
7秒前
山山而川发布了新的文献求助30
7秒前
8秒前
小小发布了新的文献求助10
9秒前
冲冲完成签到,获得积分20
9秒前
10秒前
充电宝应助foregan采纳,获得10
10秒前
小蘑菇应助kepwake采纳,获得10
10秒前
11秒前
科研通AI6应助娇气的芷巧采纳,获得10
12秒前
shiyin发布了新的文献求助10
12秒前
沉静乾完成签到,获得积分10
12秒前
计划明天炸地球完成签到,获得积分10
13秒前
13秒前
佘余发布了新的文献求助10
14秒前
牧夜白完成签到,获得积分10
14秒前
14秒前
冲冲发布了新的文献求助10
15秒前
壮观听白完成签到,获得积分10
16秒前
大钱哥发布了新的文献求助10
16秒前
FashionBoy应助专注采枫采纳,获得10
17秒前
18秒前
iamzhangly30hyit完成签到,获得积分10
18秒前
tengfei完成签到,获得积分10
18秒前
18秒前
英姑应助chen采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652998
求助须知:如何正确求助?哪些是违规求助? 4789083
关于积分的说明 15062620
捐赠科研通 4811651
什么是DOI,文献DOI怎么找? 2574020
邀请新用户注册赠送积分活动 1529772
关于科研通互助平台的介绍 1488418