A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility

材料科学 延展性(地球科学) 位错 合金 体积分数 叠加断层 极限抗拉强度 降水 高熵合金 复合材料 结构材料 冶金 蠕动 物理 气象学
作者
Yongkun Mu,Lunhua He,Sihao Deng,Yuefei Jia,Yandong Jia,Gang Wang,Qijie Zhai,Peter K. Liaw,C.T. Liu
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:232: 117975-117975 被引量:145
标识
DOI:10.1016/j.actamat.2022.117975
摘要

The introduction of dislocations and precipitates has proven to be the effective methods to improve the mechanical properties of metallic materials and break strength-ductility trade-off. However, it is difficult to obtain a suitable combination of both strategies in the metal materials, that is, the coexistence of high-density dislocations and high-volume-fraction precipitates. Here, utilizing a three-dimensional (3D) printing technique, we have successfully achieved a combination of high-density dislocation structures and high-volume-fraction ductile nano-precipitates in a high-entropy alloy (HEA). This 3D-printed HEA, with a novelty dislocation-precipitate skeleton (DPS) architecture and high-density ductile nano-precipitations wrapped in the DPS, has an ultra-high tensile strength of ∼ 1.8 GPa together with the maximum elongation of ∼ 16%. The ultra-high strength mainly comes from dislocation-precipitation synergistic strengthening, while the large ductility mainly originates from an evolution of multiple stacking fault (SF) structures. The DPS can not only slow down the dislocation movement during the strain process without completely hindering its motion, but more importantly, the DPS still has good structural stability during the deformation, which avoids any premature failure due to stress concentrations at the boundary. The DPS formation promotes the development of the metal-based 3D printing technique in the preparation of the high-performance materials, and it can provide an efficient pathway for further enhancement of the alloy properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tu123完成签到,获得积分10
刚刚
1秒前
汤飞柏发布了新的文献求助10
2秒前
大秀子完成签到,获得积分10
3秒前
艾哥完成签到,获得积分10
4秒前
情怀应助even采纳,获得10
4秒前
科研搬运工完成签到,获得积分0
5秒前
5秒前
6秒前
小火孩发布了新的文献求助10
6秒前
7秒前
7秒前
充电宝应助帝国超级硕士采纳,获得10
8秒前
在水一方应助cdddddy采纳,获得10
8秒前
鱼生完成签到,获得积分10
8秒前
9秒前
淡定的纹完成签到,获得积分10
10秒前
无奈凡波完成签到 ,获得积分10
10秒前
Kenny发布了新的文献求助10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
搜集达人应助淡淡夕阳采纳,获得10
10秒前
10秒前
无花果应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
Survivor应助科研通管家采纳,获得10
10秒前
leaf完成签到,获得积分10
10秒前
大模型应助科研通管家采纳,获得20
10秒前
打打应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得30
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958393
求助须知:如何正确求助?哪些是违规求助? 3504692
关于积分的说明 11119524
捐赠科研通 3235856
什么是DOI,文献DOI怎么找? 1788584
邀请新用户注册赠送积分活动 871232
科研通“疑难数据库(出版商)”最低求助积分说明 802605