A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility

材料科学 延展性(地球科学) 位错 合金 体积分数 叠加断层 极限抗拉强度 降水 高熵合金 复合材料 结构材料 冶金 蠕动 物理 气象学
作者
Yongkun Mu,Lunhua He,Sihao Deng,Yuefei Jia,Yandong Jia,Gang Wang,Qijie Zhai,Peter K. Liaw,C.T. Liu
出处
期刊:Acta Materialia [Elsevier]
卷期号:232: 117975-117975 被引量:173
标识
DOI:10.1016/j.actamat.2022.117975
摘要

The introduction of dislocations and precipitates has proven to be the effective methods to improve the mechanical properties of metallic materials and break strength-ductility trade-off. However, it is difficult to obtain a suitable combination of both strategies in the metal materials, that is, the coexistence of high-density dislocations and high-volume-fraction precipitates. Here, utilizing a three-dimensional (3D) printing technique, we have successfully achieved a combination of high-density dislocation structures and high-volume-fraction ductile nano-precipitates in a high-entropy alloy (HEA). This 3D-printed HEA, with a novelty dislocation-precipitate skeleton (DPS) architecture and high-density ductile nano-precipitations wrapped in the DPS, has an ultra-high tensile strength of ∼ 1.8 GPa together with the maximum elongation of ∼ 16%. The ultra-high strength mainly comes from dislocation-precipitation synergistic strengthening, while the large ductility mainly originates from an evolution of multiple stacking fault (SF) structures. The DPS can not only slow down the dislocation movement during the strain process without completely hindering its motion, but more importantly, the DPS still has good structural stability during the deformation, which avoids any premature failure due to stress concentrations at the boundary. The DPS formation promotes the development of the metal-based 3D printing technique in the preparation of the high-performance materials, and it can provide an efficient pathway for further enhancement of the alloy properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助汴汴采纳,获得10
1秒前
嘿嘿应助Tree_采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
只争朝夕完成签到 ,获得积分10
4秒前
粗心的谷蕊完成签到,获得积分10
7秒前
椒盐土豆完成签到,获得积分10
7秒前
黑闷蛋发布了新的文献求助10
8秒前
8秒前
Jasper应助Cmqq采纳,获得10
9秒前
11秒前
李爱国应助xlll采纳,获得10
11秒前
椒盐土豆发布了新的文献求助10
12秒前
12秒前
caster1发布了新的文献求助10
16秒前
今后应助大意的天亦采纳,获得10
16秒前
浮荒完成签到,获得积分20
17秒前
20秒前
黑闷蛋完成签到,获得积分10
20秒前
熠旅完成签到,获得积分10
21秒前
22秒前
马霄鑫完成签到,获得积分10
23秒前
23秒前
23秒前
赘婿应助veblem采纳,获得10
23秒前
优雅的白安完成签到,获得积分10
24秒前
24秒前
26秒前
自觉从筠完成签到 ,获得积分10
26秒前
马霄鑫发布了新的文献求助10
27秒前
wwwjy完成签到 ,获得积分10
27秒前
27秒前
ceeray23发布了新的文献求助20
28秒前
咸鱼发布了新的文献求助10
28秒前
28秒前
Ride发布了新的文献求助10
28秒前
29秒前
29秒前
林林发布了新的文献求助10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599456
求助须知:如何正确求助?哪些是违规求助? 4685036
关于积分的说明 14837601
捐赠科研通 4668162
什么是DOI,文献DOI怎么找? 2537964
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783