A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility

材料科学 延展性(地球科学) 位错 合金 体积分数 叠加断层 极限抗拉强度 降水 高熵合金 复合材料 结构材料 冶金 蠕动 物理 气象学
作者
Yongkun Mu,Lunhua He,Sihao Deng,Yuefei Jia,Yandong Jia,Gang Wang,Qijie Zhai,Peter K. Liaw,C.T. Liu
出处
期刊:Acta Materialia [Elsevier]
卷期号:232: 117975-117975 被引量:145
标识
DOI:10.1016/j.actamat.2022.117975
摘要

The introduction of dislocations and precipitates has proven to be the effective methods to improve the mechanical properties of metallic materials and break strength-ductility trade-off. However, it is difficult to obtain a suitable combination of both strategies in the metal materials, that is, the coexistence of high-density dislocations and high-volume-fraction precipitates. Here, utilizing a three-dimensional (3D) printing technique, we have successfully achieved a combination of high-density dislocation structures and high-volume-fraction ductile nano-precipitates in a high-entropy alloy (HEA). This 3D-printed HEA, with a novelty dislocation-precipitate skeleton (DPS) architecture and high-density ductile nano-precipitations wrapped in the DPS, has an ultra-high tensile strength of ∼ 1.8 GPa together with the maximum elongation of ∼ 16%. The ultra-high strength mainly comes from dislocation-precipitation synergistic strengthening, while the large ductility mainly originates from an evolution of multiple stacking fault (SF) structures. The DPS can not only slow down the dislocation movement during the strain process without completely hindering its motion, but more importantly, the DPS still has good structural stability during the deformation, which avoids any premature failure due to stress concentrations at the boundary. The DPS formation promotes the development of the metal-based 3D printing technique in the preparation of the high-performance materials, and it can provide an efficient pathway for further enhancement of the alloy properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoxiaomi应助ccrr采纳,获得20
1秒前
Margarate完成签到,获得积分10
1秒前
凝静发布了新的文献求助10
2秒前
山水木发布了新的文献求助10
2秒前
SciGPT应助周芷卉采纳,获得10
2秒前
3秒前
彭于晏应助3242晶采纳,获得10
3秒前
Gzhang完成签到,获得积分10
4秒前
4秒前
日川冈坂发布了新的文献求助10
5秒前
Eternity关注了科研通微信公众号
5秒前
xiuxiuhao发布了新的文献求助10
6秒前
爆米花应助sweet采纳,获得10
7秒前
Mp4完成签到 ,获得积分10
8秒前
一裤子灰发布了新的文献求助10
8秒前
LFY完成签到,获得积分20
9秒前
9秒前
2345应助拉佛多格采纳,获得10
9秒前
KINGMach发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
李冰完成签到,获得积分10
10秒前
10秒前
天天天蓝完成签到,获得积分10
11秒前
脂蛋白抗原应助小猫宝采纳,获得10
11秒前
深情安青应助小猫宝采纳,获得10
11秒前
叉烧完成签到 ,获得积分10
13秒前
KY Mr.WANG完成签到,获得积分0
13秒前
14秒前
迷你蛋黄应助清爽难敌采纳,获得80
16秒前
所所应助一裤子灰采纳,获得10
16秒前
16秒前
3242晶发布了新的文献求助10
16秒前
ymly25发布了新的文献求助10
16秒前
上官若男应助doudou采纳,获得10
17秒前
传奇3应助呆梨医生采纳,获得10
18秒前
hu发布了新的文献求助10
18秒前
小彩彩完成签到,获得积分10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563859
求助须知:如何正确求助?哪些是违规求助? 3137060
关于积分的说明 9420785
捐赠科研通 2837499
什么是DOI,文献DOI怎么找? 1559874
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717187