A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility

材料科学 延展性(地球科学) 位错 合金 体积分数 叠加断层 极限抗拉强度 降水 高熵合金 复合材料 结构材料 冶金 蠕动 物理 气象学
作者
Yongkun Mu,Lunhua He,Sihao Deng,Yuefei Jia,Yandong Jia,Gang Wang,Qijie Zhai,Peter K. Liaw,C.T. Liu
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:232: 117975-117975 被引量:173
标识
DOI:10.1016/j.actamat.2022.117975
摘要

The introduction of dislocations and precipitates has proven to be the effective methods to improve the mechanical properties of metallic materials and break strength-ductility trade-off. However, it is difficult to obtain a suitable combination of both strategies in the metal materials, that is, the coexistence of high-density dislocations and high-volume-fraction precipitates. Here, utilizing a three-dimensional (3D) printing technique, we have successfully achieved a combination of high-density dislocation structures and high-volume-fraction ductile nano-precipitates in a high-entropy alloy (HEA). This 3D-printed HEA, with a novelty dislocation-precipitate skeleton (DPS) architecture and high-density ductile nano-precipitations wrapped in the DPS, has an ultra-high tensile strength of ∼ 1.8 GPa together with the maximum elongation of ∼ 16%. The ultra-high strength mainly comes from dislocation-precipitation synergistic strengthening, while the large ductility mainly originates from an evolution of multiple stacking fault (SF) structures. The DPS can not only slow down the dislocation movement during the strain process without completely hindering its motion, but more importantly, the DPS still has good structural stability during the deformation, which avoids any premature failure due to stress concentrations at the boundary. The DPS formation promotes the development of the metal-based 3D printing technique in the preparation of the high-performance materials, and it can provide an efficient pathway for further enhancement of the alloy properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不知道完成签到,获得积分10
刚刚
Unfair发布了新的文献求助10
刚刚
高高的怀蕾应助0426采纳,获得10
刚刚
闾丘明雪发布了新的文献求助10
刚刚
myl完成签到,获得积分10
刚刚
浮游应助hopen采纳,获得10
1秒前
long发布了新的文献求助10
1秒前
Ava应助小新采纳,获得10
2秒前
不系舟发布了新的文献求助10
2秒前
Wen完成签到,获得积分10
2秒前
海岸线完成签到,获得积分10
2秒前
猜不猜不发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
传奇3应助酷酷小天鹅采纳,获得10
4秒前
cf2v发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
伶俐草丛完成签到,获得积分10
5秒前
骆欣怡完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
ding应助小全采纳,获得10
6秒前
yuan完成签到,获得积分10
6秒前
Lam完成签到,获得积分20
6秒前
SQ完成签到,获得积分20
6秒前
7秒前
7秒前
8秒前
Chow发布了新的文献求助10
8秒前
Candy2024发布了新的文献求助10
9秒前
唯有言若完成签到 ,获得积分10
9秒前
10秒前
科研靓仔发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
酷酷小天鹅完成签到,获得积分10
12秒前
超爱茉莉茶完成签到,获得积分10
13秒前
1111发布了新的文献求助50
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603191
求助须知:如何正确求助?哪些是违规求助? 4012087
关于积分的说明 12421692
捐赠科研通 3692454
什么是DOI,文献DOI怎么找? 2035657
邀请新用户注册赠送积分活动 1068823
科研通“疑难数据库(出版商)”最低求助积分说明 953316