氧化还原
电化学
快离子导体
八面体
材料科学
钒
X射线晶体学
萃取(化学)
X射线吸收光谱法
电极
无机化学
化学
电解质
物理化学
结晶学
吸收光谱法
晶体结构
衍射
色谱法
物理
光学
量子力学
作者
Sunkyu Park,Jean‐Noël Chotard,Dany Carlier,Iona Moog,Mathieu Duttine,François Fauth,Antonella Iadecola,Laurence Croguennec,Christian Masquelier
标识
DOI:10.1021/acs.chemmater.2c00501
摘要
Vanadium multi redox reactions of V4+/3+ and V5+/4+ can contribute to significant capacity gain in positive electrodes for Na-Ion batteries, but the activation of the V5+/4+ redox couple is often accompanied by asymmetric and irreversible electrochemical reactions that are very important to understand for developing high capacity materials while maintaining the structural stability. Here, the asymmetric Na+ extraction/insertion process in Fe/V-mixed NASICON Na4FeV(PO4)3 electrode material is thoroughly investigated from both local and bulk perspectives. X-ray diffraction analysis demonstrates that the Na(1) site is depopulated at the third charge domain when the V5+/4+ redox couple is activated. Local environments of Fe and V were investigated through Mössbauer and X-ray absorption spectroscopies. The results point toward the existence of a distorted VO6 octahedral environment, including a short V–O bond, when the V5+/4+ redox couple is activated at high voltage. This study presents valuable aspects of the asymmetric behavior during multielectron reactions that are commonly observed in V-based NASICON materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI