已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cascaded Multi-Task Road Extraction Network for Road Surface, Centerline, and Edge Extraction

计算机科学 分割 路面 GSM演进的增强数据速率 人工智能 特征提取 深度学习 北京 数据挖掘 计算机视觉 模式识别(心理学) 地理 工程类 土木工程 考古 中国
作者
Xiaoyan Lu,Yanfei Zhong,Zhuo Zheng,Dingyuan Chen,Yu Su,Ailong Ma,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:28
标识
DOI:10.1109/tgrs.2022.3165817
摘要

Road extraction from very high-resolution (VHR) remote sensing imagery remains a huge challenge, due to the shadows and occlusions of trees and buildings. Such complex backgrounds result in deep networks often producing fragmented roads with poor connectivity. Road extraction has three typical tasks: road surface segmentation (SS), centerline extraction (CE), and edge detection (ED), which are conducted in a wide range of real applications. Also, the three tasks have a symbiotic relationship, i.e., the road SS determines the location of the centerline and edges, and the CE and ED can allow the generation of more continuous road surfaces. However, most of the previous works have completed these three tasks separately, without exploiting the symbiotic relationship between them to boost the road connectivity. In this article, in order to improve road connectivity, a cascaded multitask (CasMT) road extraction framework for simultaneously extracting the road surface, centerline, and edges is proposed. In the proposed framework, topology-aware learning is applied to capture the long-distance topological relationships, and hard example mining (HEM) loss is employed to focus more on hard samples, to further enhance the road completeness. Extensive experiments were conducted on the DeepGlobe road dataset and a large-scale road dataset (called the LSCC dataset) from the three Chinese cities of Beijing, Shanghai, and Wuhan. The experimental results obtained on the public DeepGlobe dataset demonstrate that the proposed CasMT framework can significantly outperform the current state-of-the-art method. Moreover, the generalization capability of the model was verified on the LSCC dataset, where the proposed CasMT framework achieved the best performance in the average path length similarity (APLS) road topology metric, which further confirms the superiority of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咸鱼卷完成签到 ,获得积分10
3秒前
4秒前
6秒前
时尚问安完成签到 ,获得积分10
9秒前
科研通AI2S应助黙宇循光采纳,获得10
9秒前
djx123发布了新的文献求助10
10秒前
隐形曼青应助桃子采纳,获得10
10秒前
醉生梦死完成签到 ,获得积分10
11秒前
淡定荧发布了新的文献求助10
12秒前
落红雨完成签到 ,获得积分10
12秒前
无聊完成签到,获得积分10
13秒前
djx123完成签到,获得积分10
17秒前
摆烂的实验室打工人完成签到,获得积分10
18秒前
22秒前
明毓完成签到 ,获得积分10
23秒前
我爱学习完成签到 ,获得积分20
24秒前
25秒前
31秒前
余十一完成签到,获得积分10
32秒前
32秒前
明毓关注了科研通微信公众号
32秒前
eternity136应助朱宸采纳,获得10
34秒前
墨瞳发布了新的文献求助80
37秒前
Akim应助淡定荧采纳,获得10
38秒前
Vicgrance发布了新的文献求助10
38秒前
天天快乐应助阿喵采纳,获得10
39秒前
蜜桃小丸子完成签到 ,获得积分10
40秒前
李家静完成签到 ,获得积分10
43秒前
傻鱼辣椒完成签到,获得积分20
44秒前
abiorz完成签到,获得积分10
45秒前
窗外是蔚蓝色完成签到,获得积分10
46秒前
48秒前
DireWolf完成签到 ,获得积分10
49秒前
Agamemnon完成签到,获得积分10
50秒前
zxh656691发布了新的文献求助10
55秒前
56秒前
59秒前
传奇3应助菠萝吹雪采纳,获得10
1分钟前
斯文败类应助傻鱼辣椒采纳,获得10
1分钟前
Akim应助铁男卡卡罗特采纳,获得10
1分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130010
求助须知:如何正确求助?哪些是违规求助? 2780834
关于积分的说明 7750228
捐赠科研通 2436057
什么是DOI,文献DOI怎么找? 1294525
科研通“疑难数据库(出版商)”最低求助积分说明 623703
版权声明 600570