亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi-Domain Collaborative Transfer Learning Method with Multi-Scale Repeated Attention Mechanism for Underwater Side-Scan Sonar Image Classification

人工智能 计算机科学 模式识别(心理学) 学习迁移 特征提取 分类器(UML) 计算机视觉 声纳 合成孔径雷达 过度拟合 上下文图像分类 人工神经网络 图像(数学)
作者
Zhen Cheng,Guanying Huo,Haisen Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (2): 355-355 被引量:30
标识
DOI:10.3390/rs14020355
摘要

Due to the strong speckle noise caused by the seabed reverberation which makes it difficult to extract discriminating and noiseless features of a target, recognition and classification of underwater targets using side-scan sonar (SSS) images is a big challenge. Moreover, unlike classification of optical images which can use a large dataset to train the classifier, classification of SSS images usually has to exploit a very small dataset for training, which may cause classifier overfitting. Compared with traditional feature extraction methods using descriptors—such as Haar, SIFT, and LBP—deep learning-based methods are more powerful in capturing discriminating features. After training on a large optical dataset, e.g., ImageNet, direct fine-tuning method brings improvement to the sonar image classification using a small-size SSS image dataset. However, due to the different statistical characteristics between optical images and sonar images, transfer learning methods—e.g., fine-tuning—lack cross-domain adaptability, and therefore cannot achieve very satisfactory results. In this paper, a multi-domain collaborative transfer learning (MDCTL) method with multi-scale repeated attention mechanism (MSRAM) is proposed for improving the accuracy of underwater sonar image classification. In the MDCTL method, low-level characteristic similarity between SSS images and synthetic aperture radar (SAR) images, and high-level representation similarity between SSS images and optical images are used together to enhance the feature extraction ability of the deep learning model. Using different characteristics of multi-domain data to efficiently capture useful features for the sonar image classification, MDCTL offers a new way for transfer learning. MSRAM is used to effectively combine multi-scale features to make the proposed model pay more attention to the shape details of the target excluding the noise. Experimental results of classification show that, in using multi-domain data sets, the proposed method is more stable with an overall accuracy of 99.21%, bringing an improvement of 4.54% compared with the fine-tuned VGG19. Results given by diverse visualization methods also demonstrate that the method is more powerful in feature representation by using the MDCTL and MSRAM.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助文艺的代珊采纳,获得10
3秒前
13秒前
14秒前
Xin关注了科研通微信公众号
18秒前
19秒前
ddd给ddd的求助进行了留言
19秒前
bbbbb完成签到,获得积分10
24秒前
54秒前
moly完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
SDNUDRUG完成签到,获得积分10
1分钟前
Talha发布了新的文献求助10
1分钟前
慕容松发布了新的文献求助10
1分钟前
Geist完成签到 ,获得积分10
1分钟前
爆米花应助被人强迫的采纳,获得10
1分钟前
CipherSage应助慕容松采纳,获得10
1分钟前
一叶不知秋完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Liz发布了新的文献求助10
2分钟前
美满的水卉完成签到,获得积分20
2分钟前
2分钟前
2分钟前
剑逍遥完成签到 ,获得积分10
2分钟前
2分钟前
guoyu发布了新的文献求助100
2分钟前
诸葛晴天发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
情怀应助科研通管家采纳,获得30
3分钟前
仁爱的雁芙完成签到,获得积分10
3分钟前
燃烧你的梦完成签到,获得积分10
3分钟前
3分钟前
3分钟前
何琳发布了新的文献求助10
3分钟前
3分钟前
net完成签到 ,获得积分10
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015678
关于积分的说明 8871627
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482240
科研通“疑难数据库(出版商)”最低求助积分说明 685170
邀请新用户注册赠送积分活动 679951