A Multi-Domain Collaborative Transfer Learning Method with Multi-Scale Repeated Attention Mechanism for Underwater Side-Scan Sonar Image Classification

人工智能 计算机科学 模式识别(心理学) 学习迁移 特征提取 分类器(UML) 计算机视觉 声纳 合成孔径雷达 过度拟合 上下文图像分类 人工神经网络 图像(数学)
作者
Zhen Cheng,Guanying Huo,Haisen Li
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (2): 355-355 被引量:30
标识
DOI:10.3390/rs14020355
摘要

Due to the strong speckle noise caused by the seabed reverberation which makes it difficult to extract discriminating and noiseless features of a target, recognition and classification of underwater targets using side-scan sonar (SSS) images is a big challenge. Moreover, unlike classification of optical images which can use a large dataset to train the classifier, classification of SSS images usually has to exploit a very small dataset for training, which may cause classifier overfitting. Compared with traditional feature extraction methods using descriptors—such as Haar, SIFT, and LBP—deep learning-based methods are more powerful in capturing discriminating features. After training on a large optical dataset, e.g., ImageNet, direct fine-tuning method brings improvement to the sonar image classification using a small-size SSS image dataset. However, due to the different statistical characteristics between optical images and sonar images, transfer learning methods—e.g., fine-tuning—lack cross-domain adaptability, and therefore cannot achieve very satisfactory results. In this paper, a multi-domain collaborative transfer learning (MDCTL) method with multi-scale repeated attention mechanism (MSRAM) is proposed for improving the accuracy of underwater sonar image classification. In the MDCTL method, low-level characteristic similarity between SSS images and synthetic aperture radar (SAR) images, and high-level representation similarity between SSS images and optical images are used together to enhance the feature extraction ability of the deep learning model. Using different characteristics of multi-domain data to efficiently capture useful features for the sonar image classification, MDCTL offers a new way for transfer learning. MSRAM is used to effectively combine multi-scale features to make the proposed model pay more attention to the shape details of the target excluding the noise. Experimental results of classification show that, in using multi-domain data sets, the proposed method is more stable with an overall accuracy of 99.21%, bringing an improvement of 4.54% compared with the fine-tuned VGG19. Results given by diverse visualization methods also demonstrate that the method is more powerful in feature representation by using the MDCTL and MSRAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助毛毛采纳,获得10
1秒前
1秒前
2秒前
奇异物质发布了新的文献求助10
2秒前
3秒前
闪闪的尔烟完成签到,获得积分10
3秒前
3秒前
田様应助lvjiahui采纳,获得10
4秒前
司空元正发布了新的文献求助10
4秒前
5秒前
5秒前
LONG发布了新的文献求助10
6秒前
dd发布了新的文献求助10
6秒前
Orange应助worried采纳,获得10
6秒前
YYDS发布了新的文献求助10
6秒前
8秒前
汉堡包应助YuSun采纳,获得20
8秒前
8秒前
星辰大海应助易寒采纳,获得10
8秒前
8秒前
8秒前
时尚的蚂蚁完成签到,获得积分10
9秒前
搜集达人应助寒冷书竹采纳,获得10
9秒前
Dai JZ完成签到 ,获得积分10
10秒前
所所应助明理的青寒采纳,获得10
10秒前
小唐发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
HBK完成签到,获得积分20
11秒前
12秒前
小野发布了新的文献求助10
13秒前
linkman发布了新的文献求助10
13秒前
顺利毕业发布了新的文献求助10
13秒前
可爱的函函应助义气代梅采纳,获得10
14秒前
14秒前
所所应助萌萌许采纳,获得10
14秒前
wh发布了新的文献求助10
14秒前
嘤嘤怪发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198