Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra

腐殖质 土壤水分 土壤碳 总有机碳 碳纤维 偏最小二乘回归 土壤有机质 土工试验 环境科学 土壤科学 环境化学 土壤健康 化学 材料科学 数学 统计 复合数 复合材料
作者
Jeff Baldock,Bruce Hawke,Jonathan Sanderman,Lynne M. Macdonald
出处
期刊:Soil Research [CSIRO Publishing]
卷期号:51 (8): 577-577 被引量:206
标识
DOI:10.1071/sr13077
摘要

Quantifying the content and composition of soil carbon in the laboratory is time-consuming, requires specialised equipment and is therefore expensive. Rapid, simple and low-cost accurate methods of analysis are required to support current interests in carbon accounting. This study was completed to develop national and state-based models capable of predicting soil carbon content and composition by coupling diffuse reflectance mid-infrared (MIR) spectra with partial least-squares regression (PLSR) analyses. Total, organic and inorganic carbon contents were determined and MIR spectra acquired for 20 495 soil samples collected from 4526 locations from soil depths to 1 m within Australia’s agricultural regions. However, all subsequent MIR/PLSR models were developed using soils only collected from the 0–10, 10–20 and 20–30 cm depth layers. The extent of grinding applied to air-dried soil samples was found to be an important determinant of the variability in acquired MIR spectra. After standardisation of the grinding time, national MIR/PLSR models were developed using an independent test-set validation approach to predict the square-root transformed contents of total, organic and inorganic carbon and total nitrogen. Laboratory fractionation of soil organic carbon into particulate, humus and resistant forms was completed on 312 soil samples. Reliable national MIR/PLSR models were developed using cross-validation to predict the contents of these soil organic carbon fractions; however, further work is required to enhance the representation of soils with significant contents of inorganic carbon. Regional MIR/PLSR models developed for total, organic and inorganic carbon and total nitrogen contents were found to produce more reliable and accurate predictions than the national models. The MIR/PLSR approach offers a more rapid and more cost effective method, relative to traditional laboratory methods, to derive estimates of the content and composition of soil carbon and total nitrogen content provided that the soils are well represented by the calibration samples used to build the predictive models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiulin完成签到,获得积分10
刚刚
2秒前
汉堡包应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得30
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
FIN应助科研通管家采纳,获得30
5秒前
烟花应助科研通管家采纳,获得10
6秒前
奥特超曼应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
FIN应助科研通管家采纳,获得30
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
FIN应助科研通管家采纳,获得30
6秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
上官若男应助科研通管家采纳,获得10
7秒前
7秒前
英姑应助科研通管家采纳,获得10
7秒前
7秒前
俏皮半凡发布了新的文献求助10
8秒前
8秒前
Danboard完成签到,获得积分20
9秒前
爱你的心完成签到 ,获得积分10
9秒前
燕子发布了新的文献求助50
9秒前
脑洞疼应助温暖的沛凝采纳,获得10
10秒前
英姑应助zz采纳,获得10
11秒前
张俊敏发布了新的文献求助10
12秒前
U9A发布了新的文献求助10
12秒前
单薄的藏花完成签到,获得积分20
13秒前
13秒前
zhl发布了新的文献求助10
13秒前
景清发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993605
求助须知:如何正确求助?哪些是违规求助? 3534372
关于积分的说明 11265282
捐赠科研通 3274119
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712