频数推理
多级模型
广义加性模型
广义线性混合模型
计算机科学
广义线性模型
边际模型
统计推断
推论
多元自适应回归样条
混合模型
计量经济学
机器学习
贝叶斯推理
回归分析
贝叶斯概率
数学
人工智能
统计
贝叶斯多元线性回归
作者
Ciprian M. Crainiceanu,Ana‐Maria Staicu,Chongzhi Di
标识
DOI:10.1198/jasa.2009.tm08564
摘要
Abstract We introduce Generalized Multilevel Functional Linear Models (GMFLMs), a novel statistical framework for regression models where exposure has a multilevel functional structure. We show that GMFLMs are, in fact, generalized multilevel mixed models. Thus, GMFLMs can be analyzed using the mixed effects inferential machinery and can be generalized within a well-researched statistical framework. We propose and compare two methods for inference: (1) a two-stage frequentist approach; and (2) a joint Bayesian analysis. Our methods are motivated by and applied to the Sleep Heart Health Study, the largest community cohort study of sleep. However, our methods are general and easy to apply to a wide spectrum of emerging biological and medical datasets. Supplemental materials for this article are available online. Keywords: : Functional principal componentsSleep EEGSmoothing
科研通智能强力驱动
Strongly Powered by AbleSci AI