果胶酶
单宁酶
生物转化
纤维素酶
化学
环境友好型
食品科学
柚皮素
展青霉素
生物过程
芦丁
纤维素
类黄酮
酶
抗氧化剂
有机化学
生物
真菌毒素
没食子酸
生态学
古生物学
作者
José Valdo Madeira,Gabriela Alves Macêdo
摘要
Recent studies have pointed to a reduction in the incidence of some cancers, diabetes, and neuro-degenerative diseases as a result of human health benefits from flavanones. Currently, flavanones are obtained by chemical synthesis or extraction from plants, and these processes are only produced in the glycosylated form. An interesting environmentally friendly alternative that deserves attention regarding phenolic compound production is the simultaneous extraction and biotransformation of these molecules. Orange juice consumption has become a worldwide dietary habit and Brazil is the largest producer of orange juice in the world. Approximately half of the citrus fruit is discarded after the juice is processed, thus generating large amounts of residues (peel and pectinolytic material). Hence, finding an environmentally clean technique to extract natural products and bioactive compounds from different plant materials has presented a challenging task over the last decades. The aim of this study was to obtain phenolics from Brazilian citrus residues with high bioactivity, using simultaneous extraction (cellulase and pectinase) and biotransformation (tannase) by enzymatic process. The highest hesperetin, naringenin and ellagic acid production in the experiment were 120, 80, and 11,250 µg g(-1), respectively, at 5.0 U mL(-1) of cellulase and 7.0 U mL(-1) of tannase at 40°C and 200 rpm. Also, the development of this process generated an increase of 77% in the total antioxidant capacity. These results suggest that the bioprocess obtained innovative results where the simultaneous enzymatic and biotransformatic extracted flavanones from agro-industrial residues was achieved without the use of organic solvents. The methodology can therefore be considered a green technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI