We propose to create and stabilize long-lived macroscopic quantum superposition states in atomic ensembles. We show that using a fully quantum parametric amplifier can cause the simultaneous decay of two atoms and, in turn, create stabilized atomic Schr\"odinger cat states. Remarkably, even with modest parameters these intracavity atomic cat states can have an extremely long lifetime, up to 4 orders of magnitude longer than that of intracavity photonic cat states under the same parameter conditions, reaching tens of milliseconds. This lifetime of atomic cat states is ultimately limited to several seconds by extremely weak spin relaxation and thermal noise. Our work opens up a new way toward the long-standing goal of generating large-size and long-lived cat states, with immediate interests both in fundamental studies and noise-immune quantum technologies.