清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hyperspectral imaging for early identification of strawberry leaves diseases with machine learning and spectral fingerprint features

高光谱成像 模具 人工智能 灰度 光谱特征 计算机科学 灰度级 园艺 模式识别(心理学) 生物 植物 像素 遥感 地质学
作者
Qiyou Jiang,Gangshan Wu,Chongfeng Tian,Na Li,Huan Yang,Yuhao Bai,Baohua Zhang
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:118: 103898-103898 被引量:40
标识
DOI:10.1016/j.infrared.2021.103898
摘要

Anthracnose and gray mold are two most devastating diseases of strawberries which can spread to healthy plants in short time and can cause large-scale yield losses worldwide. However, early identification of anthracnose and gray mold in strawberries is challenging due to that they rise fast and their course is short. Early identification of anthracnose and gray mold in strawberries is of great significance for managing strawberry production, achieving precise target spraying, avoiding the large-scale spread of disease as well as improving the yield and quality of strawberries. In this study, six machine learning-aided methods were developed based on the selected spectral fingerprint features for early identification of anthracnose and gray mold in strawberries using a hyperspectral imaging system. First, infection strawberry leaf dataset was artificially prepared by an expert, and the hyperspectral images (during the spectrum range of 400–1000 nm) of heathy, anthracnose-infected and gray-mold-infected leaves (149 of each type), and fungus-infected leaves respectively had three stages of infection (24 h:43; 48 h:47; 72 h:59). Second, the full spectra of ROI were extracted, and chemometric methods in spectral domain were used to explore the spectral fingerprint features for early identification of anthracnose and gray mold with machine learning. Third, six classification models for identification of anthracnose and gray mold in strawberries were developed, and the classification performance were evaluated and compared. For early detection of anthracnose and gray mold in strawberries, most classification models obtain relatively good accuracy (100%) and robust performance, recognizing the asymptomatic fungus infections classes before the obvious signs of disease appear notably in the strawberry. This study provides a foundational basis for the development of the rapid online inspection as well as the real-time monitoring system for field plant disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明的泡面完成签到 ,获得积分10
6秒前
荣不凡完成签到,获得积分10
12秒前
25秒前
42秒前
meijuan1210完成签到 ,获得积分10
47秒前
47秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
小蘑菇应助科研通管家采纳,获得10
53秒前
勤奋凡之发布了新的文献求助10
1分钟前
星辰大海应助勤奋凡之采纳,获得30
1分钟前
勤奋凡之完成签到,获得积分20
1分钟前
1分钟前
1分钟前
yuyuyu完成签到,获得积分10
1分钟前
1分钟前
谨慎的雁桃完成签到,获得积分10
1分钟前
yuyuyu发布了新的文献求助10
2分钟前
wxyinhefeng完成签到 ,获得积分10
2分钟前
好想喝奶茶完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助谨慎的雁桃采纳,获得50
2分钟前
柒八染完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
良良丸完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
liuqi完成签到 ,获得积分10
4分钟前
寒冷的南琴完成签到,获得积分10
4分钟前
4分钟前
4分钟前
丘比特应助淡淡的安卉采纳,获得10
4分钟前
qingshu发布了新的文献求助10
4分钟前
华仔应助ycag采纳,获得10
4分钟前
4分钟前
无言完成签到 ,获得积分10
4分钟前
藤椒辣鱼应助qingshu采纳,获得10
4分钟前
淡淡的安卉完成签到,获得积分10
4分钟前
4分钟前
5分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434823
求助须知:如何正确求助?哪些是违规求助? 3032141
关于积分的说明 8944331
捐赠科研通 2720095
什么是DOI,文献DOI怎么找? 1492148
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685862