Traffic Volume Estimate Based on Low Penetration Connected Vehicle Data at Signalized Intersections: A Bayesian Deduction Approach

体积热力学 全球定位系统 交叉口(航空) 泊松分布 探测器 计算机科学 弹道 交通量 数据集 模拟 算法 实时计算 数学 工程类 统计 运输工程 人工智能 量子力学 电信 物理 天文
作者
Zhao Zhang,Siyao Zhang,Lei Mo,Mengdi Guo,Feng Liu,Xin Qi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 10596-10609
标识
DOI:10.1109/tits.2021.3094933
摘要

The emergence of connected vehicle (CV) technologies has created new traffic control opportunities, among them, is the potential to estimate volume without approach lane detection. Rather than requiring the expense and effort to install and maintain detector systems, this new “detector-free” method permits traffic volume to be estimated from CV GPS trajectory data. Unfortunately, however, CV GPS methods are limited not only to locations where CV GPS data can be recorded, but also limited to time when CV GPS data is recorded. The goal of this research was to overcome these limitations and permit volume estimation to be accomplished under any location or condition, including low-penetration CV environments. The contributions made by this work are significant in two respects. First, it creates an improved queue-based method to estimate intersection approach volumes during each signal cycle with sparse CV data. Second, the research demonstrates the application of a Bayesian deduction method to approximate volume with no CV trajectory data. To accomplish this, traffic volumes are assumed to be time-dependent Poisson distributed throughout the day, and CV data were used to estimate CV volume and further set as prior to deduce the time-dependent Poisson arrival rate. To verify and evaluate the accuracy and effectiveness of this new method under a range of potential traffic conditions, a simulation case study and a NGSIM case study were implemented. Results of both case studies resulted in estimated-to-actual arrival rate average errors as low as 4.2 percent and volume estimation errors as low as 0.9 percent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杰瑞院士发布了新的文献求助10
刚刚
刚刚
弄香发布了新的文献求助10
1秒前
2秒前
慧子完成签到,获得积分0
2秒前
3秒前
万安安发布了新的文献求助10
3秒前
郭达9527发布了新的文献求助10
6秒前
6秒前
寻道图强应助阔达亿先采纳,获得50
6秒前
Buoyant发布了新的文献求助10
7秒前
zdx12324完成签到,获得积分10
8秒前
可爱的函函应助迷人灵采纳,获得20
8秒前
张朝程发布了新的文献求助10
9秒前
杰瑞院士发布了新的文献求助10
9秒前
斯文败类应助星河采纳,获得10
9秒前
英姑应助dola采纳,获得10
9秒前
10秒前
12秒前
xzhang完成签到,获得积分10
13秒前
席傲柏完成签到,获得积分10
14秒前
善学以致用应助yoyo采纳,获得10
15秒前
15秒前
15秒前
16秒前
Orange应助杰瑞院士采纳,获得10
18秒前
斯文败类应助杰瑞院士采纳,获得10
18秒前
19秒前
20秒前
青阳发布了新的文献求助10
20秒前
活泼小刺猬完成签到 ,获得积分10
20秒前
bkagyin应助黄亚洲采纳,获得10
21秒前
21秒前
小黑Robot完成签到,获得积分10
21秒前
ding发布了新的文献求助30
21秒前
22秒前
星辰大海应助小李之家采纳,获得10
22秒前
23秒前
hh发布了新的文献求助10
23秒前
Yuting发布了新的文献求助10
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141127
求助须知:如何正确求助?哪些是违规求助? 2792031
关于积分的说明 7801479
捐赠科研通 2448267
什么是DOI,文献DOI怎么找? 1302482
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226