Traffic Volume Estimate Based on Low Penetration Connected Vehicle Data at Signalized Intersections: A Bayesian Deduction Approach

体积热力学 全球定位系统 交叉口(航空) 泊松分布 探测器 计算机科学 弹道 交通量 数据集 模拟 算法 实时计算 数学 工程类 统计 运输工程 人工智能 量子力学 电信 物理 天文
作者
Zhao Zhang,Siyao Zhang,Lei Mo,Mengdi Guo,Feng Liu,Xin Qi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 10596-10609
标识
DOI:10.1109/tits.2021.3094933
摘要

The emergence of connected vehicle (CV) technologies has created new traffic control opportunities, among them, is the potential to estimate volume without approach lane detection. Rather than requiring the expense and effort to install and maintain detector systems, this new “detector-free” method permits traffic volume to be estimated from CV GPS trajectory data. Unfortunately, however, CV GPS methods are limited not only to locations where CV GPS data can be recorded, but also limited to time when CV GPS data is recorded. The goal of this research was to overcome these limitations and permit volume estimation to be accomplished under any location or condition, including low-penetration CV environments. The contributions made by this work are significant in two respects. First, it creates an improved queue-based method to estimate intersection approach volumes during each signal cycle with sparse CV data. Second, the research demonstrates the application of a Bayesian deduction method to approximate volume with no CV trajectory data. To accomplish this, traffic volumes are assumed to be time-dependent Poisson distributed throughout the day, and CV data were used to estimate CV volume and further set as prior to deduce the time-dependent Poisson arrival rate. To verify and evaluate the accuracy and effectiveness of this new method under a range of potential traffic conditions, a simulation case study and a NGSIM case study were implemented. Results of both case studies resulted in estimated-to-actual arrival rate average errors as low as 4.2 percent and volume estimation errors as low as 0.9 percent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
笨笨善若发布了新的文献求助10
2秒前
2秒前
3秒前
樘樘完成签到,获得积分10
3秒前
一个有点长的序完成签到 ,获得积分10
4秒前
孙淳完成签到,获得积分10
5秒前
5秒前
YYJ25发布了新的文献求助10
6秒前
Jzhang应助tmpstlml采纳,获得10
7秒前
微笑的南露完成签到 ,获得积分10
7秒前
豌豆关注了科研通微信公众号
7秒前
10秒前
笨笨善若完成签到,获得积分10
12秒前
hs完成签到,获得积分20
12秒前
ZHANGMANLI0422完成签到,获得积分10
12秒前
susu关注了科研通微信公众号
14秒前
DYuH23完成签到,获得积分10
15秒前
16秒前
爱静静应助DHL采纳,获得10
16秒前
16秒前
sunny661104完成签到 ,获得积分10
17秒前
简单完成签到 ,获得积分10
17秒前
尘林发布了新的文献求助10
17秒前
Z-先森完成签到,获得积分0
18秒前
苏源智发布了新的文献求助10
18秒前
伯赏诗霜完成签到,获得积分10
19秒前
NN应助LIn采纳,获得10
20秒前
20秒前
超级无敌学术苦瓜完成签到,获得积分10
20秒前
20秒前
Zn应助111采纳,获得10
21秒前
舒适静丹完成签到,获得积分10
22秒前
丽颖发布了新的文献求助10
23秒前
cui完成签到,获得积分10
23秒前
lixm完成签到,获得积分10
23秒前
yyyyy语言完成签到,获得积分10
23秒前
栗子完成签到,获得积分10
24秒前
卧镁铀钳完成签到 ,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849