Traffic Volume Estimate Based on Low Penetration Connected Vehicle Data at Signalized Intersections: A Bayesian Deduction Approach

体积热力学 全球定位系统 交叉口(航空) 泊松分布 探测器 计算机科学 弹道 交通量 数据集 模拟 算法 实时计算 数学 工程类 统计 运输工程 人工智能 量子力学 电信 物理 天文
作者
Zhao Zhang,Siyao Zhang,Lei Mo,Mengdi Guo,Feng Liu,Xin Qi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 10596-10609
标识
DOI:10.1109/tits.2021.3094933
摘要

The emergence of connected vehicle (CV) technologies has created new traffic control opportunities, among them, is the potential to estimate volume without approach lane detection. Rather than requiring the expense and effort to install and maintain detector systems, this new “detector-free” method permits traffic volume to be estimated from CV GPS trajectory data. Unfortunately, however, CV GPS methods are limited not only to locations where CV GPS data can be recorded, but also limited to time when CV GPS data is recorded. The goal of this research was to overcome these limitations and permit volume estimation to be accomplished under any location or condition, including low-penetration CV environments. The contributions made by this work are significant in two respects. First, it creates an improved queue-based method to estimate intersection approach volumes during each signal cycle with sparse CV data. Second, the research demonstrates the application of a Bayesian deduction method to approximate volume with no CV trajectory data. To accomplish this, traffic volumes are assumed to be time-dependent Poisson distributed throughout the day, and CV data were used to estimate CV volume and further set as prior to deduce the time-dependent Poisson arrival rate. To verify and evaluate the accuracy and effectiveness of this new method under a range of potential traffic conditions, a simulation case study and a NGSIM case study were implemented. Results of both case studies resulted in estimated-to-actual arrival rate average errors as low as 4.2 percent and volume estimation errors as low as 0.9 percent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆锥香蕉举报宋晓静求助涉嫌违规
刚刚
Ttttt给Ttttt的求助进行了留言
刚刚
ergatoid完成签到,获得积分10
刚刚
刚刚
山乞凡完成签到 ,获得积分10
1秒前
烟花应助cs采纳,获得10
1秒前
dddd发布了新的文献求助30
2秒前
2秒前
2秒前
2秒前
isaac发布了新的文献求助10
2秒前
大个应助hif1a采纳,获得10
3秒前
笨笨翰发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
苹果追命完成签到,获得积分10
4秒前
一台小钢炮完成签到,获得积分10
4秒前
YI应助安文采纳,获得10
4秒前
wh发布了新的文献求助10
5秒前
英吉利25发布了新的文献求助10
5秒前
5秒前
董晏殊发布了新的文献求助10
6秒前
xx发布了新的文献求助10
6秒前
6秒前
林士完成签到,获得积分10
6秒前
pcy应助可耐的毛衣采纳,获得10
7秒前
爱因斯宣发布了新的文献求助10
7秒前
ghost202关注了科研通微信公众号
7秒前
辛勤饼干发布了新的文献求助10
7秒前
pantio完成签到,获得积分10
7秒前
nzxnzx发布了新的文献求助10
7秒前
小蘑菇应助王小小采纳,获得10
8秒前
Akim应助顺利紫山采纳,获得10
8秒前
8秒前
歡禧发布了新的文献求助10
9秒前
深情安青应助九月采纳,获得10
9秒前
9秒前
Liens发布了新的文献求助10
9秒前
dudu完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650