A comprehensive prognostic signature for glioblastoma patients based on transcriptomics and single cell sequencing

肿瘤科 基因 胶质瘤 内科学 转录组 比例危险模型 生物 癌症研究 医学 生物信息学 基因表达 遗传学
作者
Fan Fan,Hao Zhang,Ziyu Dai,Yakun Zhang,Zhiwei Xia,Hui Cao,Kui Yang,Shui Hu,Yong Guo,Fengqin Ding,Quan Cheng,Nan Zhang
出处
期刊:Cellular oncology [Springer Nature]
卷期号:44 (4): 917-935 被引量:35
标识
DOI:10.1007/s13402-021-00612-1
摘要

Glioblastoma (GBM) is the most common and deadly brain tumor. We aimed to reveal potential prognostic GBM marker genes, elaborate their functions, and build an effective a prognostic model for GBM patients.Through data mining of The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), we screened for significantly differentially expressed genes (DEGs) to calculate risk scores for individual patients. Published data of somatic mutation and copy number variation profiles were analyzed for distinct genomic alterations associated with risk scores. In addition, single-cell sequencing was used to explore the biological functions of the identified prognostic marker genes. By combining risk scores and other clinical features, we built a comprehensive prognostic GBM model.Seven DEGs (CLEC5A, HOXC6, HOXA5, CCL2, GPRASP1, BSCL2 and PTX3) were identified as being prognostic for GBM. Expression of these genes was confirmed in different GBM cell lines using real-time PCR. Risk scores calculated from the seven DEGs revealed prognostic value irrespective of other clinical factors, including IDH mutation status, and were negatively correlated with TP53 expression. The prognostic genes were found to be associated with tumor proliferation and progression based on pseudo-time analysis in neoplastic cells. A final prognostic model was developed and validated with a good performance, especially in geriatric GBM patients.Using genetic profiles, age, IDH mutation status, and chemotherapy and radiotherapy, we constructed a comprehensive prognostic model for GBM patients. The model has a good performance, especially in geriatric GBM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热涵柏发布了新的文献求助10
刚刚
111发布了新的文献求助10
刚刚
iota完成签到,获得积分10
刚刚
2150号发布了新的文献求助10
2秒前
Felixsun完成签到,获得积分10
2秒前
santory应助无辜凤凰采纳,获得10
2秒前
2秒前
城南完成签到 ,获得积分10
2秒前
科目三应助tulips采纳,获得10
2秒前
3秒前
F_ken发布了新的文献求助10
6秒前
iota发布了新的文献求助30
6秒前
酷波er应助2150号采纳,获得10
6秒前
大模型应助hh采纳,获得10
7秒前
学渣完成签到,获得积分10
7秒前
单于天宇完成签到,获得积分10
10秒前
10秒前
10秒前
Deannn778完成签到,获得积分10
11秒前
花笙完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
羊一完成签到 ,获得积分10
15秒前
tulips发布了新的文献求助10
16秒前
你嵙这个期刊没买完成签到 ,获得积分10
16秒前
18秒前
无为发布了新的文献求助10
19秒前
爱听歌的冷安完成签到,获得积分10
19秒前
20秒前
拟好啊完成签到,获得积分10
21秒前
科目三应助冷傲曼冬采纳,获得10
21秒前
zlk完成签到 ,获得积分10
23秒前
LC完成签到 ,获得积分10
23秒前
拟好啊发布了新的文献求助10
25秒前
27秒前
27秒前
27秒前
你好完成签到,获得积分10
28秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298643
求助须知:如何正确求助?哪些是违规求助? 4447181
关于积分的说明 13841710
捐赠科研通 4332612
什么是DOI,文献DOI怎么找? 2378257
邀请新用户注册赠送积分活动 1373533
关于科研通互助平台的介绍 1339134