A comprehensive prognostic signature for glioblastoma patients based on transcriptomics and single cell sequencing

肿瘤科 基因 胶质瘤 内科学 转录组 比例危险模型 生物 癌症研究 医学 生物信息学 基因表达 遗传学
作者
Fan Fan,Hao Zhang,Ziyu Dai,Yakun Zhang,Zhiwei Xia,Hui Cao,Kui Yang,Shui Hu,Yong Guo,Fengqin Ding,Quan Cheng,Nan Zhang
出处
期刊:Cellular oncology [Springer Nature]
卷期号:44 (4): 917-935 被引量:35
标识
DOI:10.1007/s13402-021-00612-1
摘要

Glioblastoma (GBM) is the most common and deadly brain tumor. We aimed to reveal potential prognostic GBM marker genes, elaborate their functions, and build an effective a prognostic model for GBM patients.Through data mining of The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), we screened for significantly differentially expressed genes (DEGs) to calculate risk scores for individual patients. Published data of somatic mutation and copy number variation profiles were analyzed for distinct genomic alterations associated with risk scores. In addition, single-cell sequencing was used to explore the biological functions of the identified prognostic marker genes. By combining risk scores and other clinical features, we built a comprehensive prognostic GBM model.Seven DEGs (CLEC5A, HOXC6, HOXA5, CCL2, GPRASP1, BSCL2 and PTX3) were identified as being prognostic for GBM. Expression of these genes was confirmed in different GBM cell lines using real-time PCR. Risk scores calculated from the seven DEGs revealed prognostic value irrespective of other clinical factors, including IDH mutation status, and were negatively correlated with TP53 expression. The prognostic genes were found to be associated with tumor proliferation and progression based on pseudo-time analysis in neoplastic cells. A final prognostic model was developed and validated with a good performance, especially in geriatric GBM patients.Using genetic profiles, age, IDH mutation status, and chemotherapy and radiotherapy, we constructed a comprehensive prognostic model for GBM patients. The model has a good performance, especially in geriatric GBM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zss发布了新的文献求助10
刚刚
1秒前
1秒前
恰饭睡觉发布了新的文献求助10
1秒前
搜集达人应助tayyao采纳,获得10
2秒前
2秒前
2秒前
2秒前
星辰大海应助HH采纳,获得10
3秒前
完美世界应助ZiJay采纳,获得10
3秒前
木头马尾应助和风采纳,获得20
3秒前
kaiyi完成签到,获得积分10
3秒前
4秒前
田様应助wyt采纳,获得10
4秒前
彭于晏应助zzz采纳,获得10
4秒前
4秒前
5秒前
5秒前
怡然凌兰发布了新的文献求助10
5秒前
awaer发布了新的文献求助10
5秒前
5秒前
6秒前
zdl发布了新的文献求助10
6秒前
风清扬发布了新的文献求助10
7秒前
7秒前
xu发布了新的文献求助10
8秒前
哈哈发布了新的文献求助30
8秒前
8秒前
Rookie发布了新的文献求助10
9秒前
车大花发布了新的文献求助10
9秒前
10秒前
搞怪世德发布了新的文献求助10
10秒前
keyan完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
情怀应助无奈沛白采纳,获得10
11秒前
方勇飞发布了新的文献求助10
11秒前
Mumu完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4955711
求助须知:如何正确求助?哪些是违规求助? 4217634
关于积分的说明 13124912
捐赠科研通 4000130
什么是DOI,文献DOI怎么找? 2189214
邀请新用户注册赠送积分活动 1204326
关于科研通互助平台的介绍 1116304