A comprehensive prognostic signature for glioblastoma patients based on transcriptomics and single cell sequencing

肿瘤科 基因 胶质瘤 内科学 转录组 比例危险模型 生物 癌症研究 医学 生物信息学 基因表达 遗传学
作者
Fan Fan,Hao Zhang,Ziyu Dai,Yakun Zhang,Zhiwei Xia,Hui Cao,Kui Yang,Shui Hu,Yong Guo,Fengqin Ding,Quan Cheng,Nan Zhang
出处
期刊:Cellular oncology [Springer Nature]
卷期号:44 (4): 917-935 被引量:31
标识
DOI:10.1007/s13402-021-00612-1
摘要

Glioblastoma (GBM) is the most common and deadly brain tumor. We aimed to reveal potential prognostic GBM marker genes, elaborate their functions, and build an effective a prognostic model for GBM patients.Through data mining of The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), we screened for significantly differentially expressed genes (DEGs) to calculate risk scores for individual patients. Published data of somatic mutation and copy number variation profiles were analyzed for distinct genomic alterations associated with risk scores. In addition, single-cell sequencing was used to explore the biological functions of the identified prognostic marker genes. By combining risk scores and other clinical features, we built a comprehensive prognostic GBM model.Seven DEGs (CLEC5A, HOXC6, HOXA5, CCL2, GPRASP1, BSCL2 and PTX3) were identified as being prognostic for GBM. Expression of these genes was confirmed in different GBM cell lines using real-time PCR. Risk scores calculated from the seven DEGs revealed prognostic value irrespective of other clinical factors, including IDH mutation status, and were negatively correlated with TP53 expression. The prognostic genes were found to be associated with tumor proliferation and progression based on pseudo-time analysis in neoplastic cells. A final prognostic model was developed and validated with a good performance, especially in geriatric GBM patients.Using genetic profiles, age, IDH mutation status, and chemotherapy and radiotherapy, we constructed a comprehensive prognostic model for GBM patients. The model has a good performance, especially in geriatric GBM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
云帆完成签到,获得积分10
1秒前
可靠代丝发布了新的文献求助10
1秒前
2秒前
hsing发布了新的文献求助10
3秒前
3秒前
姚子敏发布了新的文献求助10
3秒前
东东完成签到 ,获得积分10
3秒前
22完成签到,获得积分10
3秒前
july九月完成签到,获得积分10
3秒前
score17完成签到,获得积分10
4秒前
4秒前
孤独的匕发布了新的文献求助10
4秒前
ssss发布了新的文献求助10
5秒前
5秒前
5秒前
传奇3应助活力千青采纳,获得10
5秒前
Bodhicia发布了新的文献求助10
5秒前
6秒前
阳光的冬天完成签到,获得积分10
6秒前
Lucas应助22采纳,获得10
6秒前
6秒前
VISIN完成签到,获得积分10
7秒前
李士祥完成签到,获得积分20
9秒前
王大锤完成签到,获得积分10
11秒前
murphy发布了新的文献求助30
12秒前
搜集达人应助suka采纳,获得10
13秒前
打打应助兜兜采纳,获得10
13秒前
香蕉觅云应助寒冷的老太采纳,获得10
14秒前
遥远的尧应助羞涩的高山采纳,获得10
14秒前
彭于晏应助lourahan采纳,获得10
15秒前
跳跃醉蝶应助文件撤销了驳回
17秒前
Bodhicia完成签到 ,获得积分10
17秒前
17秒前
土豆发布了新的文献求助10
18秒前
飞太难完成签到,获得积分10
19秒前
20秒前
鹏程完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157989
求助须知:如何正确求助?哪些是违规求助? 2809366
关于积分的说明 7881582
捐赠科研通 2467822
什么是DOI,文献DOI怎么找? 1313728
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943