亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A comprehensive prognostic signature for glioblastoma patients based on transcriptomics and single cell sequencing

肿瘤科 基因 胶质瘤 内科学 转录组 比例危险模型 生物 癌症研究 医学 生物信息学 基因表达 遗传学
作者
Fan Fan,Hao Zhang,Ziyu Dai,Yakun Zhang,Zhiwei Xia,Hui Cao,Kui Yang,Shui Hu,Yong Guo,Fengqin Ding,Quan Cheng,Nan Zhang
出处
期刊:Cellular oncology [Springer Nature]
卷期号:44 (4): 917-935 被引量:31
标识
DOI:10.1007/s13402-021-00612-1
摘要

Glioblastoma (GBM) is the most common and deadly brain tumor. We aimed to reveal potential prognostic GBM marker genes, elaborate their functions, and build an effective a prognostic model for GBM patients.Through data mining of The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), we screened for significantly differentially expressed genes (DEGs) to calculate risk scores for individual patients. Published data of somatic mutation and copy number variation profiles were analyzed for distinct genomic alterations associated with risk scores. In addition, single-cell sequencing was used to explore the biological functions of the identified prognostic marker genes. By combining risk scores and other clinical features, we built a comprehensive prognostic GBM model.Seven DEGs (CLEC5A, HOXC6, HOXA5, CCL2, GPRASP1, BSCL2 and PTX3) were identified as being prognostic for GBM. Expression of these genes was confirmed in different GBM cell lines using real-time PCR. Risk scores calculated from the seven DEGs revealed prognostic value irrespective of other clinical factors, including IDH mutation status, and were negatively correlated with TP53 expression. The prognostic genes were found to be associated with tumor proliferation and progression based on pseudo-time analysis in neoplastic cells. A final prognostic model was developed and validated with a good performance, especially in geriatric GBM patients.Using genetic profiles, age, IDH mutation status, and chemotherapy and radiotherapy, we constructed a comprehensive prognostic model for GBM patients. The model has a good performance, especially in geriatric GBM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三三完成签到 ,获得积分10
16秒前
猪猪hero应助nssm采纳,获得10
19秒前
shaylie完成签到 ,获得积分10
21秒前
可靠的寒风完成签到,获得积分10
30秒前
31秒前
随便发布了新的文献求助10
32秒前
科研通AI2S应助可靠的寒风采纳,获得10
36秒前
gtgyh完成签到 ,获得积分10
40秒前
yy完成签到 ,获得积分10
43秒前
Chnimike完成签到 ,获得积分10
47秒前
小二郎应助科研通管家采纳,获得10
51秒前
CipherSage应助study666采纳,获得10
54秒前
科研通AI2S应助悦耳人生采纳,获得10
56秒前
我又帅又红又专完成签到,获得积分20
59秒前
Eins完成签到 ,获得积分10
1分钟前
huy完成签到 ,获得积分10
1分钟前
阿翼完成签到 ,获得积分10
1分钟前
沐染完成签到,获得积分10
1分钟前
大个应助重要的夏烟采纳,获得10
1分钟前
悦耳人生完成签到,获得积分10
1分钟前
XFaning发布了新的文献求助10
1分钟前
1分钟前
王伟应助MIMI采纳,获得10
1分钟前
1分钟前
study666发布了新的文献求助10
1分钟前
斯文败类应助mikecaicai采纳,获得30
1分钟前
碧蓝的冰绿完成签到,获得积分20
1分钟前
yuwen发布了新的文献求助10
1分钟前
李爱国应助爱撒娇的曼凝采纳,获得10
1分钟前
Lokiki完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
李健应助XFaning采纳,获得10
1分钟前
小六子完成签到,获得积分10
1分钟前
科研通AI5应助魔幻的雁兰采纳,获得10
1分钟前
1分钟前
2分钟前
领导范儿应助study666采纳,获得10
2分钟前
随便发布了新的文献求助10
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968293
求助须知:如何正确求助?哪些是违规求助? 3513229
关于积分的说明 11166833
捐赠科研通 3248478
什么是DOI,文献DOI怎么找? 1794268
邀请新用户注册赠送积分活动 874956
科研通“疑难数据库(出版商)”最低求助积分说明 804629