Albumin corrected anion gap for predicting in-hospital mortality among intensive care patients with sepsis: A retrospective propensity score matching analysis

倾向得分匹配 败血症 医学 重症监护 尤登J统计 白蛋白 接收机工作特性 内科学 回顾性队列研究 重症监护医学
作者
Tianyang Hu,Zhengwei Zhang,Youfan Jiang
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:521: 272-277 被引量:41
标识
DOI:10.1016/j.cca.2021.07.021
摘要

• Albumin corrected anion gap was related to in-hospital mortality in intensive care patients with sepsis. • Albumin corrected anion gap has a better predictive value. • Albumin corrected anion gap may obtain the highest net benefit. The relationship between albumin corrected anion gap (ACAG) and in-hospital mortality of intensive care sepsis patients is currently inconclusive. The baseline data, concentration of albumin, anion gap (AG), ACAG and in-hospital prognosis of intensive care patients with sepsis were retrieved from the Medical Information Mart for Intensive Care IV database. Propensity score matching (PSM) analysis was performed to reduce bias. Receiver operating characteristic curves were drawn for albumin, AG, and ACAG, and comparisons between the areas under the ROC curves were conducted. Decision curve analysis (DCA) was performed to determine the net benefit of ACAG. ACAG was related to in-hospital mortality in intensive care patients with sepsis. The AUCs of ACAG were 0.689 (before PSM) and 0.644 (after PSM), which were significantly higher than that of albumin or AG. The Youden’s index of ACAG was the highest, and the net benefit range of ACAG was also the largest according to the DCA. ACAG has the highest predictive value for in-hospital mortality of intensive care patients with sepsis, which is better than albumin and AG. Using ACAG to predict the in-hospital mortality to guide clinical applications may obtain the highest net benefit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助xia采纳,获得10
刚刚
ddy完成签到,获得积分10
1秒前
zmy发布了新的文献求助10
1秒前
鳗鱼厉发布了新的文献求助10
1秒前
孤存完成签到 ,获得积分10
1秒前
zho关闭了zho文献求助
1秒前
2秒前
4秒前
aaashirz_完成签到,获得积分10
4秒前
科研通AI2S应助风中寄云采纳,获得10
4秒前
coffeecup1完成签到,获得积分10
6秒前
萌萌许完成签到,获得积分10
6秒前
6秒前
斯文鸡完成签到,获得积分10
7秒前
萌萌完成签到,获得积分10
8秒前
sallltyyy完成签到,获得积分10
8秒前
VV完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
coffeecup1发布了新的文献求助10
10秒前
小飞完成签到,获得积分10
11秒前
牛文文完成签到,获得积分10
11秒前
GZX完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
gaga关注了科研通微信公众号
13秒前
搜集达人应助阿敏采纳,获得10
13秒前
13秒前
复杂瑛发布了新的文献求助10
14秒前
在水一方应助不对也没错采纳,获得10
14秒前
小飞发布了新的文献求助30
15秒前
15秒前
豪哥大大完成签到,获得积分10
16秒前
16秒前
汉堡包应助神勇的曼文采纳,获得10
17秒前
田様应助顾闭月采纳,获得10
17秒前
新的心跳发布了新的文献求助10
17秒前
白石杏发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794