A new selection operator for differential evolution algorithm

水准点(测量) 向量算子 差异进化 计算机科学 微分算子 算法 数学 操作员(生物学) 数学优化 矢量场 选择(遗传算法) 人工智能 化学 抑制因子 纯数学 地理 转录因子 基因 几何学 生物化学 大地测量学 螺线管矢量场
作者
Zhiqiang Zeng,Min Zhang,Tao Chen,Zhiyong Hong
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:226: 107150-107150 被引量:82
标识
DOI:10.1016/j.knosys.2021.107150
摘要

Abstract Most research on improving differential evolution algorithms has focused on mutation operator and parameter control. In this paper, a new selection operator is proposed to improve differential evolution algorithm performance. When the individual is not in a state of stagnation, the proposed selection operator is the same as the classical selection operator, meaning that it chooses the best vector from the trial vector and parent vector to survive to the next generation. When the individual is in a state of stagnation, the three other candidate vectors may survive to the next generation. The first candidate vector is the best vector of all the discarded trial vectors of the parent vector. The second candidate vector is the second-best vector of all the discarded trial vectors of the parent vector. The third candidate vector is randomly chosen from all the successfully updated solutions. The proposed selection operator will improve the differential evolution algorithm’s ability to escape the local optimal value. 58 benchmark functions are used for verification of the proposed selection operator’s performance. Experiments were conducted in order to compare six differential evolution algorithms’ performances using the proposed selection operator and not using the proposed selection operator. Simulation results showed that the proposed selection operator significantly improved the differential evolution algorithm’s performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低的秋蝶完成签到,获得积分10
刚刚
叮叮当当发布了新的文献求助30
1秒前
1秒前
ying完成签到,获得积分10
1秒前
dopamine发布了新的文献求助10
2秒前
麦乐迪应助圆圆采纳,获得10
3秒前
4秒前
幼儿园老大完成签到,获得积分10
4秒前
infe完成签到,获得积分10
4秒前
高高完成签到,获得积分10
4秒前
可爱问寒完成签到 ,获得积分20
5秒前
乘乘完成签到 ,获得积分10
6秒前
Syanyi完成签到 ,获得积分10
6秒前
6秒前
6秒前
领导范儿应助宁阿霜采纳,获得10
8秒前
知名不具发布了新的文献求助10
10秒前
10秒前
10秒前
小二郎应助称心的寄风采纳,获得10
11秒前
荼蘼发布了新的文献求助10
11秒前
吱吱吱完成签到 ,获得积分10
11秒前
Qianwen发布了新的文献求助10
12秒前
VDC应助虚心的芹采纳,获得30
12秒前
12秒前
高兴的又菡完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
linman发布了新的文献求助10
14秒前
马兵发布了新的文献求助10
15秒前
Saya发布了新的文献求助10
15秒前
LL发布了新的文献求助10
15秒前
我爱睡觉完成签到 ,获得积分10
16秒前
yenom发布了新的文献求助10
16秒前
乐乐应助HJJHJH采纳,获得10
17秒前
顾矜应助科研小畅采纳,获得10
17秒前
jiao发布了新的文献求助10
18秒前
孤独的枫叶完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577935
求助须知:如何正确求助?哪些是违规求助? 3997037
关于积分的说明 12374100
捐赠科研通 3671042
什么是DOI,文献DOI怎么找? 2023214
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176