亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new selection operator for differential evolution algorithm

水准点(测量) 向量算子 差异进化 计算机科学 微分算子 算法 数学 操作员(生物学) 数学优化 矢量场 选择(遗传算法) 人工智能 化学 抑制因子 纯数学 地理 转录因子 基因 几何学 生物化学 大地测量学 螺线管矢量场
作者
Zhiqiang Zeng,Min Zhang,Tao Chen,Zhiyong Hong
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:226: 107150-107150 被引量:82
标识
DOI:10.1016/j.knosys.2021.107150
摘要

Abstract Most research on improving differential evolution algorithms has focused on mutation operator and parameter control. In this paper, a new selection operator is proposed to improve differential evolution algorithm performance. When the individual is not in a state of stagnation, the proposed selection operator is the same as the classical selection operator, meaning that it chooses the best vector from the trial vector and parent vector to survive to the next generation. When the individual is in a state of stagnation, the three other candidate vectors may survive to the next generation. The first candidate vector is the best vector of all the discarded trial vectors of the parent vector. The second candidate vector is the second-best vector of all the discarded trial vectors of the parent vector. The third candidate vector is randomly chosen from all the successfully updated solutions. The proposed selection operator will improve the differential evolution algorithm’s ability to escape the local optimal value. 58 benchmark functions are used for verification of the proposed selection operator’s performance. Experiments were conducted in order to compare six differential evolution algorithms’ performances using the proposed selection operator and not using the proposed selection operator. Simulation results showed that the proposed selection operator significantly improved the differential evolution algorithm’s performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助nsc采纳,获得10
22秒前
田様应助nsc采纳,获得10
22秒前
小蘑菇应助nsc采纳,获得10
22秒前
Hello应助nsc采纳,获得10
22秒前
orixero应助nsc采纳,获得10
22秒前
小二郎应助nsc采纳,获得10
22秒前
无花果应助nsc采纳,获得10
23秒前
烟花应助nsc采纳,获得10
23秒前
JamesPei应助nsc采纳,获得10
23秒前
科研通AI5应助nsc采纳,获得10
23秒前
30秒前
49秒前
量子星尘发布了新的文献求助10
57秒前
六六完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957061
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264