Novel accelerated Stochastic Progressive Photon Mapping rendering with neural network

路径跟踪 渲染(计算机图形) 全局照明 计算机科学 人工智能 人工神经网络 计算机视觉 重要性抽样 光线追踪(物理) 光子 降噪 深度学习 像素 蒙特卡罗方法 数学 光学 物理 统计
作者
Qiwei Xing,Chun-Yi Chen,Zhihua Li
出处
期刊:Journal of physics [IOP Publishing]
卷期号:1848 (1): 012160-012160
标识
DOI:10.1088/1742-6596/1848/1/012160
摘要

Abstract Recently, deep learning-based approaches have led to dramatic improvements for Monte Carlo rendering at the low sampling rate. Most of these approaches are aimed at path tracing. However, they are not suitable for photon mapping. In this paper, we develop a novel accelerate stochastic progressive photon mapping approaches with neural network. First, our framework utilizes the particle-based rendering and focuses on photon density estimation. We train a neural network to predict a kernel function to aggregate photon contributions at shading point. Then we construct a estimation images with the prediction network. During experiments, we could find that there are spike pixels and noises in estimation images sometimes. So we present the improved denoising network to post-process the estimation images. Finally, we can obtain the high-quality reconstructions of complex global illumination effects like caustics with an order of magnitude fewer photons compared with previous photon mapping methods. Besides, our denoising network can reduce most multi-scale noises on both low-frequency and high-frequency areas while preserving more illumination details, especially caustics, compared with other state-of-the-art learning-based denoising methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lishumin完成签到,获得积分10
刚刚
LaTeXer应助xingxing采纳,获得50
刚刚
香蕉觅云应助沙洲采纳,获得10
刚刚
1秒前
2秒前
MM完成签到 ,获得积分10
2秒前
英俊雪曼发布了新的文献求助10
4秒前
nana发布了新的文献求助10
5秒前
5秒前
英俊的铭应助阿修罗采纳,获得10
5秒前
臧为发布了新的文献求助10
5秒前
吴彦祖发布了新的文献求助10
5秒前
科研通AI6应助葡萄夹子采纳,获得10
6秒前
6秒前
6秒前
8秒前
8秒前
科研通AI6应助哈哈哈采纳,获得10
8秒前
搜集达人应助高挑的鑫磊采纳,获得10
8秒前
52Hertz发布了新的文献求助10
8秒前
8秒前
打打应助EeeYiz采纳,获得10
8秒前
9秒前
9秒前
10秒前
感动白开水完成签到,获得积分10
11秒前
12秒前
Ziyi_Xu发布了新的文献求助10
12秒前
178应助顺其自然_666888采纳,获得10
12秒前
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
即将高产sci完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
娜子完成签到,获得积分10
17秒前
嘿嘿发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537501
求助须知:如何正确求助?哪些是违规求助? 4624968
关于积分的说明 14594101
捐赠科研通 4565491
什么是DOI,文献DOI怎么找? 2502427
邀请新用户注册赠送积分活动 1481018
关于科研通互助平台的介绍 1452211