根(腹足类)
编码(内存)
计算机科学
尖峰神经网络
算术
人工神经网络
人工智能
数学
生物
植物
作者
Zhehui Wang,Xiaozhe Gu,Rick Siow Mong Goh,Joey Tianyi Zhou,Tao Luo
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2024-03-01
卷期号:35 (3): 3689-3701
被引量:3
标识
DOI:10.1109/tnnls.2022.3195918
摘要
Spiking neural networks (SNNs) have advantages in latency and energy efficiency over traditional artificial neural networks (ANNs) due to their event-driven computation mechanism and the replacement of energy-consuming weight multiplication with addition. However, to achieve high accuracy, it usually requires long spike trains to ensure accuracy, usually more than 1000 time steps. This offsets the computation efficiency brought by SNNs because a longer spike train means a larger number of operations and larger latency. In this article, we propose a radix-encoded SNN, which has ultrashort spike trains. Specifically, it is able to use less than six time steps to achieve even higher accuracy than its traditional counterpart. We also develop a method to fit our radix encoding technique into the ANN-to-SNN conversion approach so that we can train radix-encoded SNNs more efficiently on mature platforms and hardware. Experiments show that our radix encoding can achieve 25× improvement in latency and 1.7% improvement in accuracy compared to the state-of-the-art method using the VGG-16 network on the CIFAR-10 dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI