Alzheimer's classification using dynamic ensemble of classifiers selection algorithms: A performance analysis

计算机科学 人工智能 模式识别(心理学) 机器学习 特征选择 集成学习 分类器(UML) 支持向量机 人工神经网络 随机森林 统计分类 随机子空间法 朴素贝叶斯分类器
作者
K P Muhammed Niyas,P. Thiyagarajan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:68: 102729-
标识
DOI:10.1016/j.bspc.2021.102729
摘要

Abstract Alzheimer's is a type of severe cognitive impairment where an individual cannot do their daily day-to-day activities. It is a challenging task to find out the Alzheimer's and Mild Cognitive Impairment patients. This study aims to compare the performance of the state of the art Dynamic Ensemble Selection of Classifier algorithms for classifying healthy, Mild Cognitive Impairment, and Alzheimer's disease participants at the baseline stage itself using multimodal features. The data used in the study is from Alzheimer's Disease Neuroimaging Initiative-TADPOLE dataset. The medical imaging, Cerebro-spinal fluid, cognitive test, and demographics data of the patients at the baseline visits are considered for the prediction purpose. The performance of the state-of-the-art Dynamic Ensemble of Classifier Selection algorithms is compared using these features in terms of Balanced Classification Accuracy, Sensitivity, and Specificity. The most commonly used pool of Machine Learning classifiers is used as the input for Dynamic Ensemble of Classifier Selection algorithms. Moreover, the performance of the pool of Machine Learning classifiers without using the Dynamic Ensemble Selection of Classifiers algorithms are also compared. The performance metrics such as Balanced Classification Accuracy, Sensitivity, and Specificity are increased after using the Dynamic Ensemble of Classifier Selection algorithms on most of the pool of classifiers for classifying healthy, Alzheimer's, and Mild Cognitive Impairment patients is promising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
Yuanchaoyi完成签到,获得积分20
2秒前
务实凡灵完成签到,获得积分10
3秒前
疯了半天完成签到,获得积分10
3秒前
王强完成签到,获得积分10
4秒前
4秒前
dong东包发布了新的文献求助10
5秒前
西瓜完成签到 ,获得积分10
5秒前
小张完成签到,获得积分10
6秒前
EVEN发布了新的文献求助30
7秒前
王冉冉发布了新的文献求助10
7秒前
7秒前
研无止境w发布了新的文献求助10
8秒前
10秒前
奶油泡fu完成签到 ,获得积分10
10秒前
dong东包完成签到,获得积分20
11秒前
11秒前
ED应助cccccc采纳,获得10
11秒前
shangziru发布了新的文献求助10
12秒前
漠之梦完成签到,获得积分20
13秒前
sc完成签到,获得积分10
13秒前
谦让的含海完成签到,获得积分10
13秒前
好运連連完成签到,获得积分10
14秒前
16秒前
liu完成签到,获得积分10
16秒前
飞翔的霸天哥应助Yuanchaoyi采纳,获得30
17秒前
香蕉觅云应助WJH采纳,获得10
18秒前
汉堡包应助研友_LOoomL采纳,获得10
18秒前
小二郎应助Felix采纳,获得10
18秒前
zaphkiel完成签到 ,获得积分10
19秒前
健壮的囧完成签到,获得积分10
20秒前
torch132完成签到,获得积分10
21秒前
桐桐应助阿景采纳,获得10
22秒前
22秒前
震动的平松完成签到 ,获得积分10
22秒前
Ting完成签到 ,获得积分10
23秒前
23秒前
Hello应助王冉冉采纳,获得30
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048