Alzheimer's classification using dynamic ensemble of classifiers selection algorithms: A performance analysis

计算机科学 人工智能 模式识别(心理学) 机器学习 特征选择 集成学习 分类器(UML) 支持向量机 人工神经网络 随机森林 统计分类 随机子空间法 朴素贝叶斯分类器
作者
K P Muhammed Niyas,P. Thiyagarajan
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:68: 102729-
标识
DOI:10.1016/j.bspc.2021.102729
摘要

Abstract Alzheimer's is a type of severe cognitive impairment where an individual cannot do their daily day-to-day activities. It is a challenging task to find out the Alzheimer's and Mild Cognitive Impairment patients. This study aims to compare the performance of the state of the art Dynamic Ensemble Selection of Classifier algorithms for classifying healthy, Mild Cognitive Impairment, and Alzheimer's disease participants at the baseline stage itself using multimodal features. The data used in the study is from Alzheimer's Disease Neuroimaging Initiative-TADPOLE dataset. The medical imaging, Cerebro-spinal fluid, cognitive test, and demographics data of the patients at the baseline visits are considered for the prediction purpose. The performance of the state-of-the-art Dynamic Ensemble of Classifier Selection algorithms is compared using these features in terms of Balanced Classification Accuracy, Sensitivity, and Specificity. The most commonly used pool of Machine Learning classifiers is used as the input for Dynamic Ensemble of Classifier Selection algorithms. Moreover, the performance of the pool of Machine Learning classifiers without using the Dynamic Ensemble Selection of Classifiers algorithms are also compared. The performance metrics such as Balanced Classification Accuracy, Sensitivity, and Specificity are increased after using the Dynamic Ensemble of Classifier Selection algorithms on most of the pool of classifiers for classifying healthy, Alzheimer's, and Mild Cognitive Impairment patients is promising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
大力发布了新的文献求助10
1秒前
1秒前
小宅宅完成签到,获得积分10
1秒前
材1完成签到 ,获得积分10
2秒前
肖承祥完成签到 ,获得积分10
2秒前
yueyueyue发布了新的文献求助10
3秒前
冰淇淋完成签到,获得积分10
4秒前
4秒前
tryptophan完成签到,获得积分10
4秒前
4秒前
wsh完成签到,获得积分10
4秒前
ark861023发布了新的文献求助10
5秒前
5秒前
失眠白容发布了新的文献求助10
5秒前
番茄杀手完成签到 ,获得积分10
6秒前
浮游应助张张赶紧看文献采纳,获得10
6秒前
Ling完成签到,获得积分10
6秒前
ZHANGJIAN发布了新的文献求助10
6秒前
7秒前
ZTF发布了新的文献求助10
7秒前
铁蛋发布了新的文献求助10
7秒前
8秒前
辛勤芷天发布了新的文献求助10
8秒前
郭飒发布了新的文献求助10
8秒前
8秒前
图图发布了新的文献求助10
8秒前
8秒前
传奇3应助处处铃铛响采纳,获得10
8秒前
英姑应助处处铃铛响采纳,获得10
8秒前
充电宝应助处处铃铛响采纳,获得10
8秒前
深情安青应助处处铃铛响采纳,获得10
8秒前
9秒前
9秒前
GSQ发布了新的文献求助10
9秒前
vvvvvv完成签到,获得积分10
9秒前
紫焰完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285299
求助须知:如何正确求助?哪些是违规求助? 4438487
关于积分的说明 13817325
捐赠科研通 4319766
什么是DOI,文献DOI怎么找? 2371149
邀请新用户注册赠送积分活动 1366693
关于科研通互助平台的介绍 1330152