Development and Validation of a Machine-Learning Model for Prediction of Extubation Failure in Intensive Care Units

医学 重症监护 机器学习 呼吸频率 机械通风 特征工程 急诊医学 计算机科学 人工智能 重症监护医学 心率 血压 深度学习 内科学
作者
Qinyu Zhao,Huan Wang,Jing-Chao Luo,Minghao Luo,Leping Liu,Shen-Ji Yu,Kai Liu,Qian Zhang,Peng Sun,Guo-Wei Tu,Zhe Luo
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:8 被引量:50
标识
DOI:10.3389/fmed.2021.676343
摘要

Background: Extubation failure (EF) can lead to an increased chance of ventilator-associated pneumonia, longer hospital stays, and a higher mortality rate. This study aimed to develop and validate an accurate machine-learning model to predict EF in intensive care units (ICUs). Methods: Patients who underwent extubation in the Medical Information Mart for Intensive Care (MIMIC)-IV database were included. EF was defined as the need for ventilatory support (non-invasive ventilation or reintubation) or death within 48 h following extubation. A machine-learning model called Categorical Boosting (CatBoost) was developed based on 89 clinical and laboratory variables. SHapley Additive exPlanations (SHAP) values were calculated to evaluate feature importance and the recursive feature elimination (RFE) algorithm was used to select key features. Hyperparameter optimization was conducted using an automated machine-learning toolkit (Neural Network Intelligence). The final model was trained based on key features and compared with 10 other models. The model was then prospectively validated in patients enrolled in the Cardiac Surgical ICU of Zhongshan Hospital, Fudan University. In addition, a web-based tool was developed to help clinicians use our model. Results: Of 16,189 patients included in the MIMIC-IV cohort, 2,756 (17.0%) had EF. Nineteen key features were selected using the RFE algorithm, including age, body mass index, stroke, heart rate, respiratory rate, mean arterial pressure, peripheral oxygen saturation, temperature, pH, central venous pressure, tidal volume, positive end-expiratory pressure, mean airway pressure, pressure support ventilation (PSV) level, mechanical ventilation (MV) durations, spontaneous breathing trial success times, urine output, crystalloid amount, and antibiotic types. After hyperparameter optimization, our model had the greatest area under the receiver operating characteristic (AUROC: 0.835) in internal validation. Significant differences in mortality, reintubation rates, and NIV rates were shown between patients with a high predicted risk and those with a low predicted risk. In the prospective validation, the superiority of our model was also observed (AUROC: 0.803). According to the SHAP values, MV duration and PSV level were the most important features for prediction. Conclusions: In conclusion, this study developed and prospectively validated a CatBoost model, which better predicted EF in ICUs than other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyj完成签到,获得积分10
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
君临完成签到,获得积分10
2秒前
林早上完成签到,获得积分20
2秒前
xiu完成签到 ,获得积分10
3秒前
栗爷完成签到,获得积分0
3秒前
深年完成签到,获得积分10
4秒前
求知若渴完成签到,获得积分0
4秒前
所所应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得30
4秒前
李爱国应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
5秒前
一团小煤球完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
卡乐瑞咩吹可完成签到,获得积分10
5秒前
田様应助科研通管家采纳,获得10
5秒前
苦咖啡行僧完成签到 ,获得积分10
5秒前
鹤鸣完成签到,获得积分10
6秒前
守望阳光1完成签到,获得积分10
6秒前
正直天空发布了新的文献求助10
6秒前
8秒前
YU发布了新的文献求助10
8秒前
大方元风完成签到 ,获得积分10
8秒前
隐形曼青应助自觉寒梦采纳,获得10
9秒前
ntxlks完成签到,获得积分10
9秒前
祝雲完成签到,获得积分10
9秒前
Spice完成签到 ,获得积分10
10秒前
John完成签到,获得积分20
10秒前
高高诗柳发布了新的文献求助10
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029