Development and Validation of a Machine-Learning Model for Prediction of Extubation Failure in Intensive Care Units

医学 重症监护 机器学习 呼吸频率 机械通风 特征工程 急诊医学 计算机科学 人工智能 重症监护医学 心率 血压 深度学习 内科学
作者
Qinyu Zhao,Huan Wang,Jing-Chao Luo,Minghao Luo,Leping Liu,Shen-Ji Yu,Kai Liu,Qian Zhang,Peng Sun,Guo-Wei Tu,Zhe Luo
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:8 被引量:50
标识
DOI:10.3389/fmed.2021.676343
摘要

Background: Extubation failure (EF) can lead to an increased chance of ventilator-associated pneumonia, longer hospital stays, and a higher mortality rate. This study aimed to develop and validate an accurate machine-learning model to predict EF in intensive care units (ICUs). Methods: Patients who underwent extubation in the Medical Information Mart for Intensive Care (MIMIC)-IV database were included. EF was defined as the need for ventilatory support (non-invasive ventilation or reintubation) or death within 48 h following extubation. A machine-learning model called Categorical Boosting (CatBoost) was developed based on 89 clinical and laboratory variables. SHapley Additive exPlanations (SHAP) values were calculated to evaluate feature importance and the recursive feature elimination (RFE) algorithm was used to select key features. Hyperparameter optimization was conducted using an automated machine-learning toolkit (Neural Network Intelligence). The final model was trained based on key features and compared with 10 other models. The model was then prospectively validated in patients enrolled in the Cardiac Surgical ICU of Zhongshan Hospital, Fudan University. In addition, a web-based tool was developed to help clinicians use our model. Results: Of 16,189 patients included in the MIMIC-IV cohort, 2,756 (17.0%) had EF. Nineteen key features were selected using the RFE algorithm, including age, body mass index, stroke, heart rate, respiratory rate, mean arterial pressure, peripheral oxygen saturation, temperature, pH, central venous pressure, tidal volume, positive end-expiratory pressure, mean airway pressure, pressure support ventilation (PSV) level, mechanical ventilation (MV) durations, spontaneous breathing trial success times, urine output, crystalloid amount, and antibiotic types. After hyperparameter optimization, our model had the greatest area under the receiver operating characteristic (AUROC: 0.835) in internal validation. Significant differences in mortality, reintubation rates, and NIV rates were shown between patients with a high predicted risk and those with a low predicted risk. In the prospective validation, the superiority of our model was also observed (AUROC: 0.803). According to the SHAP values, MV duration and PSV level were the most important features for prediction. Conclusions: In conclusion, this study developed and prospectively validated a CatBoost model, which better predicted EF in ICUs than other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健的小迷弟应助ccq采纳,获得10
2秒前
元谷雪应助小甄甄采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
华仔应助黎明采纳,获得10
5秒前
aaaaaa完成签到,获得积分10
6秒前
科研通AI2S应助H.采纳,获得10
7秒前
开心发布了新的文献求助10
11秒前
小白杨完成签到,获得积分10
11秒前
15秒前
17秒前
19秒前
兴奋的平松完成签到,获得积分10
19秒前
阳光小虾米完成签到,获得积分10
20秒前
大模型应助666采纳,获得10
22秒前
九月完成签到,获得积分10
22秒前
23秒前
wqy发布了新的文献求助10
23秒前
24秒前
美满的稚晴完成签到 ,获得积分10
26秒前
科研通AI2S应助义气断缘采纳,获得30
28秒前
巫雁发布了新的文献求助10
28秒前
29秒前
xuan完成签到,获得积分20
33秒前
zojoy完成签到,获得积分10
33秒前
Keven发布了新的文献求助10
33秒前
好好学习完成签到,获得积分10
34秒前
槑槑完成签到 ,获得积分10
36秒前
安心6666完成签到 ,获得积分10
37秒前
科研通AI2S应助叶孤城采纳,获得10
39秒前
luanshi完成签到,获得积分10
39秒前
aixiaoming0503完成签到,获得积分10
42秒前
Keven完成签到,获得积分10
43秒前
Phoenix ZHANG完成签到 ,获得积分10
44秒前
木缘完成签到 ,获得积分10
45秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023