Digital Twin-driven framework for fatigue life prediction of steel bridges using a probabilistic multiscale model: Application to segmental orthotropic steel deck specimen

结构工程 巴黎法 概率逻辑 蒙特卡罗方法 贝叶斯推理 正交异性材料 有限元法 工程类 材料科学 计算机科学 断裂力学 贝叶斯概率 数学 裂缝闭合 统计 人工智能
作者
Fei Jiang,Youliang Ding,Yongsheng Song,Fangfang Geng,Zhiwen Wang
出处
期刊:Engineering Structures [Elsevier]
卷期号:241: 112461-112461 被引量:50
标识
DOI:10.1016/j.engstruct.2021.112461
摘要

Accurate fatigue life prediction facilitates the fatigue maintenance of steel bridges. Since Digital Twin can simulate the lifecycle for physical objects at various scales, this study aims to provide a Digital Twin-driven framework for non-deterministic fatigue life prediction of steel bridges. A probabilistic multiscale model was developed to depict the fatigue evolution throughout the bridge lifecycle. The small crack initiation period was well described by the modified Fine and Bhat model considering microstructure uncertainties. After obtaining the critical model parameter via crystal plastic finite element simulation, the modified model was further calibrated using the assumed historical fatigue data in Digital Twin database. Based on the initiated half-penny-shaped small crack, the small crack initiation period was connected to the macrocrack extension period. Given the uncertainties of macrocrack propagation, the Paris’ law with random growth parameters was adopted. The Bayesian inference of the growth parameters realized the real-time calibration of the macrocrack growth model using Markov chain Monte Carlo simulation. The feasibility of the proposed framework was demonstrated through fatigue tests on a segmental steel deck specimen with mixed-mode deformed U-rib to diaphragm welded joints. The results show that the predicted fatigue initiation life and residual fatigue life are in good agreement with the experimentally observed life results. In summary, the proposed framework enhances our understanding of the fatigue evolution mechanism throughout the bridge lifecycle and provides an entirely new approach to accurately predict the fatigue life of steel bridges under various sources of uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzy发布了新的文献求助80
刚刚
Buster发布了新的文献求助10
4秒前
JIANYOUFU完成签到,获得积分10
5秒前
Owen应助奋斗迎波采纳,获得10
8秒前
不配.应助科研通管家采纳,获得50
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
9秒前
子车茗应助科研通管家采纳,获得20
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
Buster完成签到,获得积分10
9秒前
和谐雁荷完成签到 ,获得积分10
9秒前
bobecust完成签到,获得积分10
14秒前
16秒前
16秒前
田様应助小稻草人采纳,获得50
17秒前
20秒前
maaicui发布了新的文献求助10
20秒前
柳琰发布了新的文献求助10
22秒前
23秒前
onemm发布了新的文献求助10
23秒前
23秒前
Q Eason发布了新的文献求助10
25秒前
maaicui完成签到,获得积分10
27秒前
老白完成签到,获得积分10
28秒前
橙子完成签到,获得积分10
29秒前
励志梦完成签到,获得积分10
30秒前
拾遗就是我完成签到,获得积分10
30秒前
37秒前
38秒前
Owen应助小稻草人采纳,获得10
38秒前
Li完成签到,获得积分10
39秒前
冰淇淋完成签到,获得积分10
40秒前
Jacob完成签到,获得积分10
41秒前
顺心的烨伟完成签到,获得积分20
42秒前
spc发布了新的文献求助10
43秒前
火星仙人掌完成签到 ,获得积分10
44秒前
44秒前
意义完成签到,获得积分10
45秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239639
求助须知:如何正确求助?哪些是违规求助? 2884893
关于积分的说明 8235782
捐赠科研通 2553095
什么是DOI,文献DOI怎么找? 1381328
科研通“疑难数据库(出版商)”最低求助积分说明 649225
邀请新用户注册赠送积分活动 624914