Digital Twin-driven framework for fatigue life prediction of steel bridges using a probabilistic multiscale model: Application to segmental orthotropic steel deck specimen

结构工程 甲板 概率逻辑 正交异性材料 有限元法 工程类 材料科学 计算机科学 人工智能
作者
Fei Jiang,Youliang Ding,Yongsheng Song,Fangfang Geng,Zhiwen Wang
出处
期刊:Engineering Structures [Elsevier]
卷期号:241: 112461-112461 被引量:95
标识
DOI:10.1016/j.engstruct.2021.112461
摘要

Accurate fatigue life prediction facilitates the fatigue maintenance of steel bridges. Since Digital Twin can simulate the lifecycle for physical objects at various scales, this study aims to provide a Digital Twin-driven framework for non-deterministic fatigue life prediction of steel bridges. A probabilistic multiscale model was developed to depict the fatigue evolution throughout the bridge lifecycle. The small crack initiation period was well described by the modified Fine and Bhat model considering microstructure uncertainties. After obtaining the critical model parameter via crystal plastic finite element simulation, the modified model was further calibrated using the assumed historical fatigue data in Digital Twin database. Based on the initiated half-penny-shaped small crack, the small crack initiation period was connected to the macrocrack extension period. Given the uncertainties of macrocrack propagation, the Paris’ law with random growth parameters was adopted. The Bayesian inference of the growth parameters realized the real-time calibration of the macrocrack growth model using Markov chain Monte Carlo simulation. The feasibility of the proposed framework was demonstrated through fatigue tests on a segmental steel deck specimen with mixed-mode deformed U-rib to diaphragm welded joints. The results show that the predicted fatigue initiation life and residual fatigue life are in good agreement with the experimentally observed life results. In summary, the proposed framework enhances our understanding of the fatigue evolution mechanism throughout the bridge lifecycle and provides an entirely new approach to accurately predict the fatigue life of steel bridges under various sources of uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bingrui发布了新的文献求助10
刚刚
追寻语风发布了新的文献求助10
刚刚
其11完成签到,获得积分10
刚刚
1秒前
1秒前
强小强完成签到,获得积分10
2秒前
Liuxinxin发布了新的文献求助10
2秒前
香蕉觅云应助solkatt采纳,获得10
2秒前
朴素羊完成签到 ,获得积分10
2秒前
wangjiayun完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
华仔应助白衣修身采纳,获得10
4秒前
HMM发布了新的文献求助10
4秒前
4秒前
情怀应助sabarate采纳,获得20
5秒前
5秒前
5秒前
chnningji发布了新的文献求助10
6秒前
典雅访旋完成签到,获得积分10
6秒前
sugy完成签到,获得积分20
6秒前
雯雯完成签到 ,获得积分10
6秒前
7秒前
大模型应助三子采纳,获得30
7秒前
量子星尘发布了新的文献求助10
8秒前
乖乖羊发布了新的文献求助10
8秒前
zej发布了新的文献求助10
8秒前
8秒前
ENIX完成签到 ,获得积分10
8秒前
9秒前
DAKE完成签到,获得积分10
9秒前
Yimi发布了新的文献求助10
9秒前
追寻树叶发布了新的文献求助10
11秒前
大卉卉发布了新的文献求助10
11秒前
我是老大应助zxy采纳,获得10
11秒前
11秒前
科研小虫发布了新的文献求助10
12秒前
筱小筱发布了新的文献求助10
12秒前
mumu完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473178
求助须知:如何正确求助?哪些是违规求助? 4575418
关于积分的说明 14352529
捐赠科研通 4502905
什么是DOI,文献DOI怎么找? 2467377
邀请新用户注册赠送积分活动 1455298
关于科研通互助平台的介绍 1429322