Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis

逻辑回归 医学 预测建模 统计 机器学习 人工智能 计算机科学 回归分析 梯度升压 荟萃分析 Boosting(机器学习) 曲线下面积 时间点 急性肾损伤 接收机工作特性 随机森林 内科学 数学 哲学 美学
作者
Xuan Song,Xinyan Liu,Fei Liu,Chunting Wang
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:151: 104484-104484 被引量:150
标识
DOI:10.1016/j.ijmedinf.2021.104484
摘要

We aimed to assess whether machine learning models are superior at predicting acute kidney injury (AKI) compared to logistic regression (LR), a conventional prediction model.Eligible studies were identified using PubMed and Embase. A total of 24 studies consisting of 84 prediction models met inclusion criteria. Independent samples t-test was performed to detect mean differences in area under the curve (AUC) between ML and LR models. One-way ANOVA and post-hoc t-tests were performed to assess mean differences in AUC between ML methods.AUC data were similar between ML (0.736 ± 0.116) and LR (0.748 ± 0.057) models (p = 0.538). However, specific ML models, such as gradient boosting (0.838 ± 0.077), exhibited superior performance at predicting AKI as compared to other ML models in the literature (p < 0.05). Creatinine and urine output, standard variables assessed for AKI staging, were classified as significant predictors across multiple ML models, although the majority of significant predictors were unique and study specific.These data suggest that ML models perform equally to that of LR, however ML models exhibit variable performance with some ML models displaying exceptional performance. The variability in ML prediction of AKI can be attributed, in part, to the specific ML model utilized, variable selection and processing, study and subject characteristics, and the steps associated with model training, validation, testing, and calibration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cos完成签到,获得积分10
刚刚
2秒前
2秒前
day_on发布了新的文献求助10
4秒前
4秒前
害羞凤灵关注了科研通微信公众号
4秒前
谋学完成签到,获得积分20
4秒前
tuanheqi应助完美的海秋采纳,获得30
7秒前
科研胖子发布了新的文献求助10
8秒前
orixero应助小嘉贞采纳,获得10
11秒前
12秒前
784273145完成签到 ,获得积分10
12秒前
13秒前
15秒前
17秒前
tuanheqi应助小旋风采纳,获得20
18秒前
mori26应助treelet007采纳,获得10
18秒前
谋学发布了新的文献求助10
18秒前
三只小熊发布了新的文献求助10
19秒前
大个应助重要冲采纳,获得30
21秒前
23秒前
23秒前
独特凡松完成签到,获得积分10
23秒前
24秒前
24秒前
123完成签到,获得积分10
25秒前
25秒前
aiiLuX完成签到 ,获得积分10
25秒前
26秒前
tuanheqi应助完美的海秋采纳,获得30
27秒前
28秒前
开朗眼神完成签到,获得积分10
28秒前
岁岁平安完成签到,获得积分10
28秒前
29秒前
31秒前
32秒前
33秒前
33秒前
科研通AI2S应助whuhustwit采纳,获得10
34秒前
重要冲发布了新的文献求助30
34秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242411
求助须知:如何正确求助?哪些是违规求助? 2886764
关于积分的说明 8244805
捐赠科研通 2555314
什么是DOI,文献DOI怎么找? 1383399
科研通“疑难数据库(出版商)”最低求助积分说明 649702
邀请新用户注册赠送积分活动 625537