Leveraging graph neural networks for point-of-interest recommendations

计算机科学 兴趣点 节点(物理) 图形 钥匙(锁) 学习排名 精确性和召回率 机器学习 构造(python库) 数据挖掘 人工智能 情报检索 理论计算机科学 排名(信息检索) 工程类 结构工程 计算机安全 程序设计语言
作者
Jiyong Zhang,Xin Liu,Xiaofei Zhou,Xiaowen Chu
出处
期刊:Neurocomputing [Elsevier]
卷期号:462: 1-13 被引量:21
标识
DOI:10.1016/j.neucom.2021.07.063
摘要

Point-of-Interest (POI) recommendation, i.e., suggesting POIs that a user is likely to visit, is a key task to improve user experience in location based social networks (LBSNs). Existing models either focus on geographical influence without considering other factors such as social influence and temporal influence or rely on linear methods to combine different modeling factors, lacking a sophisticated and systematical way to learn representations for users and POIs for recommendation. To remedy these issues, in this work we propose GNN-POI, a generic POI recommendation framework that leverages Graph Neural Networks (GNNs), which demonstrate powerful modeling capacity to learn node representations from node information and topological structure to improve POI recommendation. Specifically, we construct a LBSN graph comprising of two types of nodes, i.e., user node and POI node. For a target user, her preference representation is learned by combining (1) representations of her social connection nodes and (2) representations of the visited POI nodes. For social connection nodes integration, in order to model the complicated and multifaceted social influence, an attention mechanism is applied to learn strengths of heterogeneous social relations; for location nodes integration, we utilize Bi-directional Long Short-Term Memory (Bi-LSTM) to model users’ sequential check-in behavior, taking into account geographical and temporal features. Extensive experiments conducted over three real LBSN datasets show that the proposed GNN based framework significantly outperforms the state-of-the-art POI recommendation models in terms of precision, recall and Normalized Discounted Cumulative Gain (NDCG).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
贪玩的笑阳完成签到,获得积分10
1秒前
2秒前
江城发布了新的文献求助10
2秒前
kevin发布了新的文献求助20
2秒前
菜菜完成签到,获得积分10
2秒前
chillin完成签到 ,获得积分10
3秒前
大壮完成签到,获得积分10
3秒前
3秒前
七七发布了新的文献求助10
3秒前
tu完成签到,获得积分20
3秒前
江任意西完成签到 ,获得积分10
4秒前
4秒前
陈椅子的求学完成签到,获得积分10
4秒前
赘婿应助mcsmdxs采纳,获得10
4秒前
鉴定为寄完成签到,获得积分20
4秒前
FLY完成签到,获得积分10
5秒前
岁月轮回发布了新的文献求助10
5秒前
sakiecon完成签到,获得积分10
5秒前
omo完成签到,获得积分10
5秒前
调研昵称发布了新的文献求助10
6秒前
6秒前
华仔应助留胡子的青柏采纳,获得10
6秒前
6秒前
建丰完成签到,获得积分10
7秒前
7秒前
乐乐应助宗笑晴采纳,获得10
7秒前
拼搏太英完成签到,获得积分10
7秒前
8秒前
susu发布了新的文献求助200
8秒前
10秒前
loveyouxkkt应助韦老虎采纳,获得30
10秒前
小蘑菇应助含糊采纳,获得10
11秒前
深情安青应助狂野觅云采纳,获得10
11秒前
鉴定为寄发布了新的文献求助30
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762