Leveraging graph neural networks for point-of-interest recommendations

计算机科学 兴趣点 节点(物理) 图形 钥匙(锁) 学习排名 精确性和召回率 机器学习 构造(python库) 数据挖掘 人工智能 情报检索 理论计算机科学 排名(信息检索) 工程类 结构工程 计算机安全 程序设计语言
作者
Jiyong Zhang,Xin Liu,Xiaofei Zhou,Xiaowen Chu
出处
期刊:Neurocomputing [Elsevier]
卷期号:462: 1-13 被引量:21
标识
DOI:10.1016/j.neucom.2021.07.063
摘要

Point-of-Interest (POI) recommendation, i.e., suggesting POIs that a user is likely to visit, is a key task to improve user experience in location based social networks (LBSNs). Existing models either focus on geographical influence without considering other factors such as social influence and temporal influence or rely on linear methods to combine different modeling factors, lacking a sophisticated and systematical way to learn representations for users and POIs for recommendation. To remedy these issues, in this work we propose GNN-POI, a generic POI recommendation framework that leverages Graph Neural Networks (GNNs), which demonstrate powerful modeling capacity to learn node representations from node information and topological structure to improve POI recommendation. Specifically, we construct a LBSN graph comprising of two types of nodes, i.e., user node and POI node. For a target user, her preference representation is learned by combining (1) representations of her social connection nodes and (2) representations of the visited POI nodes. For social connection nodes integration, in order to model the complicated and multifaceted social influence, an attention mechanism is applied to learn strengths of heterogeneous social relations; for location nodes integration, we utilize Bi-directional Long Short-Term Memory (Bi-LSTM) to model users’ sequential check-in behavior, taking into account geographical and temporal features. Extensive experiments conducted over three real LBSN datasets show that the proposed GNN based framework significantly outperforms the state-of-the-art POI recommendation models in terms of precision, recall and Normalized Discounted Cumulative Gain (NDCG).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LC发布了新的文献求助10
1秒前
2秒前
2秒前
duzhongyan完成签到,获得积分10
2秒前
天天快乐应助微笑沛文采纳,获得10
2秒前
巫安白完成签到 ,获得积分10
3秒前
3秒前
4秒前
ShowMaker发布了新的文献求助50
5秒前
W1ll完成签到,获得积分10
5秒前
充电宝应助zhishi采纳,获得10
5秒前
坐等时光看轻自己完成签到,获得积分10
6秒前
阿甘发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
duzhongyan发布了新的文献求助10
6秒前
善学以致用应助Suyi采纳,获得10
7秒前
7秒前
netrandwalk完成签到,获得积分10
7秒前
hahahah发布了新的文献求助10
8秒前
无花果应助LC采纳,获得10
9秒前
9秒前
旋转胡萝卜完成签到,获得积分10
10秒前
李大帅发布了新的文献求助20
10秒前
10秒前
kane发布了新的文献求助10
10秒前
Ava应助Mikey采纳,获得10
11秒前
共享精神应助鬼才之眼采纳,获得10
11秒前
温其如玉发布了新的文献求助10
11秒前
12秒前
12秒前
黄少天发布了新的文献求助10
12秒前
13秒前
FelixFelicis完成签到 ,获得积分10
14秒前
惊鸿客完成签到,获得积分10
15秒前
苦行僧发布了新的文献求助10
15秒前
15秒前
王灿灿发布了新的文献求助10
17秒前
66m37发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143353
求助须知:如何正确求助?哪些是违规求助? 2794636
关于积分的说明 7811842
捐赠科研通 2450801
什么是DOI,文献DOI怎么找? 1304061
科研通“疑难数据库(出版商)”最低求助积分说明 627178
版权声明 601386