数学
正规化(语言学)
方差减少
随机梯度下降算法
应用数学
收敛速度
反向
反问题
差异(会计)
梯度下降
趋同(经济学)
数学优化
数学分析
统计
计算机科学
人工神经网络
人工智能
几何学
频道(广播)
会计
业务
经济
经济增长
计算机网络
蒙特卡罗方法
作者
Bangti Jin,Zehui Zhou,Jun Zou
出处
期刊:Inverse Problems
[IOP Publishing]
日期:2021-12-17
卷期号:38 (2): 025009-025009
被引量:1
标识
DOI:10.1088/1361-6420/ac4428
摘要
Abstract Stochastic variance reduced gradient (SVRG) is a popular variance reduction technique for accelerating stochastic gradient descent (SGD). We provide a first analysis of the method for solving a class of linear inverse problems in the lens of the classical regularization theory. We prove that for a suitable constant step size schedule, the method can achieve an optimal convergence rate in terms of the noise level (under suitable regularity condition) and the variance of the SVRG iterate error is smaller than that by SGD. These theoretical findings are corroborated by a set of numerical experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI