时域有限差分法
Q系数
质量(理念)
散射
物理
二部图
激发
等离子体子
格子(音乐)
表面等离子体子
光学
光电子学
计算机科学
谐振器
量子力学
声学
图形
理论计算机科学
作者
Joshua T. Y. Tse,H. C. Ong
出处
期刊:Physical review
日期:2021-09-29
卷期号:104 (12)
被引量:8
标识
DOI:10.1103/physrevb.104.125442
摘要
Surface lattice resonance (SLR) is the collective excitation of nanoparticle resonances arising from the hybridization between localized surface plasmons (LSPs) and propagating Rayleigh anomalies (RAs). When comparing with the corresponding LSPs, SLRs exhibit much higher quality factor. In fact, as the quality factor depends on the constituting resonances and their hybridization, how one can parametrize it in an analytic form is an important issue. We have studied the SLRs arising from 2D Au monopartite nanoparticle arrays by angle- and polarization-resolved reflectivity spectroscopy, temporal coupled mode theory (CMT) and finite-difference time-domain (FDTD) simulation. The scattering matrix of the SLRs is formulated, revealing the importance of the spectral detuning and the interaction strengths between the LSP and the RAs in governing the quality factor. We then extend the CMT approach to study bipartite arrays where nanoparticle dimer is employed and find the coupling between two LSPs plays a major role in further boosting the quality factor. Specifically, the coupling takes part in controlling the detuning factor as well as determining whether the coupled bright or dark mode is hybridized with the RAs. The dark mode hybridization can strongly enhance the quality factor which is otherwise not possible in the monopartite counterparts.
科研通智能强力驱动
Strongly Powered by AbleSci AI