GAN‐segNet: A deep generative adversarial segmentation network for brain tumor semantic segmentation

计算机科学 分割 人工智能 深度学习 自编码 模式识别(心理学) 生成对抗网络 图像分割 人工神经网络 市场细分 业务 营销
作者
Shaoguo Cui,Mingjun Wei,Chang Liu,Jingfeng Jiang
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:32 (3): 857-868 被引量:8
标识
DOI:10.1002/ima.22677
摘要

Abstract In this study, we present a novel automatic segmentation method using a neural network model named GAN‐segNet, which can not only identify brain tumors from MRI images but also accurately delineate intratumor regions. Since brain tumors with varying shapes and sizes can appear anywhere in the brain and image quality and contrast of MRI could be inadequate, automatic segmentation remains challenging despite its importance in the clinical workflow. The proposed GAN‐segNet is an innovative modification of the Generative Adversarial Network (GAN) and can efficiently and accurately segment brain tumors. One key innovation of our GAN model is an autoencoder learning representation of input data that were added to the generative network of the above‐mentioned GAN. By doing so, information extracted through convolution operations can be meaningfully regularized. As a result, the scales of extracted features can be controlled by the added autoencoder to preserve detail. Additionally, we propose an innovative loss function based on the concept of focal loss to effectively mitigate the impact of label imbalance. The above‐mentioned combination enables the proposed GAN‐segNet model to improve the segmentation of small intratumor region(s). We demonstrate the proposed method using MRI data available from a public database, that is, Brain Tumor Segmentation Challenge 2018 database (BRATS 2018). Using the proposed GAN‐segNet model, the average Dice scores were 0.8280, 0.9022, and 0.814 for segmenting enhancing tumor core, whole tumor, and tumor core, respectively. Furthermore, positive predictive values for segmenting enhanced tumor core, whole tumor, and tumor core were 0.8496, 0.9270, and 0.8610, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香精完成签到,获得积分10
1秒前
yinwenchen完成签到,获得积分10
2秒前
龙川发布了新的文献求助10
3秒前
八戒完成签到 ,获得积分0
3秒前
1111完成签到,获得积分10
3秒前
11发布了新的文献求助10
3秒前
恋雪发布了新的文献求助10
3秒前
华贞完成签到,获得积分10
4秒前
彬墩墩完成签到,获得积分10
5秒前
yzlsci完成签到,获得积分0
5秒前
7秒前
10秒前
11秒前
sia完成签到 ,获得积分0
11秒前
11秒前
桐桐应助koutianle采纳,获得10
12秒前
调皮的老王头完成签到,获得积分10
12秒前
Jason完成签到,获得积分10
15秒前
15秒前
1111发布了新的文献求助10
17秒前
MHK发布了新的文献求助10
17秒前
reece发布了新的文献求助10
18秒前
怀玉完成签到 ,获得积分10
18秒前
19秒前
wanci应助JJJ采纳,获得10
20秒前
pf发布了新的文献求助10
20秒前
可乐完成签到,获得积分20
20秒前
20秒前
愉快的戎完成签到,获得积分10
22秒前
XY发布了新的文献求助10
24秒前
可乐发布了新的文献求助30
24秒前
顾矜应助reece采纳,获得10
25秒前
伶俐的春天完成签到 ,获得积分10
27秒前
28秒前
医生发布了新的文献求助10
28秒前
pf完成签到,获得积分10
29秒前
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得30
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912912
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388