GAN‐segNet: A deep generative adversarial segmentation network for brain tumor semantic segmentation

计算机科学 分割 人工智能 深度学习 自编码 模式识别(心理学) 生成对抗网络 图像分割 人工神经网络 市场细分 业务 营销
作者
Shaoguo Cui,Mingjun Wei,Chang Liu,Jingfeng Jiang
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:32 (3): 857-868 被引量:8
标识
DOI:10.1002/ima.22677
摘要

Abstract In this study, we present a novel automatic segmentation method using a neural network model named GAN‐segNet, which can not only identify brain tumors from MRI images but also accurately delineate intratumor regions. Since brain tumors with varying shapes and sizes can appear anywhere in the brain and image quality and contrast of MRI could be inadequate, automatic segmentation remains challenging despite its importance in the clinical workflow. The proposed GAN‐segNet is an innovative modification of the Generative Adversarial Network (GAN) and can efficiently and accurately segment brain tumors. One key innovation of our GAN model is an autoencoder learning representation of input data that were added to the generative network of the above‐mentioned GAN. By doing so, information extracted through convolution operations can be meaningfully regularized. As a result, the scales of extracted features can be controlled by the added autoencoder to preserve detail. Additionally, we propose an innovative loss function based on the concept of focal loss to effectively mitigate the impact of label imbalance. The above‐mentioned combination enables the proposed GAN‐segNet model to improve the segmentation of small intratumor region(s). We demonstrate the proposed method using MRI data available from a public database, that is, Brain Tumor Segmentation Challenge 2018 database (BRATS 2018). Using the proposed GAN‐segNet model, the average Dice scores were 0.8280, 0.9022, and 0.814 for segmenting enhancing tumor core, whole tumor, and tumor core, respectively. Furthermore, positive predictive values for segmenting enhanced tumor core, whole tumor, and tumor core were 0.8496, 0.9270, and 0.8610, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ornot君君发布了新的文献求助10
1秒前
Ava应助成就的幼南采纳,获得10
1秒前
2秒前
NexusExplorer应助刘亚赛采纳,获得10
3秒前
ruochenzu发布了新的文献求助10
4秒前
faye发布了新的文献求助10
4秒前
5秒前
栓牛哥完成签到,获得积分10
7秒前
8秒前
彭于晏应助ornot君君采纳,获得10
9秒前
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
Rondab应助科研通管家采纳,获得10
11秒前
Rondab应助科研通管家采纳,获得10
11秒前
木头人应助科研通管家采纳,获得10
11秒前
核桃应助科研通管家采纳,获得50
11秒前
12秒前
熊猫完成签到,获得积分0
12秒前
慕青应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
orixero应助枯槁赴渊采纳,获得10
12秒前
逸之狐应助科研通管家采纳,获得20
12秒前
yznfly应助科研通管家采纳,获得30
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
无私的以云完成签到,获得积分10
14秒前
15秒前
sun发布了新的文献求助10
15秒前
852应助苏打采纳,获得10
16秒前
16秒前
17秒前
17秒前
ShengQ发布了新的文献求助10
18秒前
18秒前
CXS发布了新的文献求助30
18秒前
科研工头发布了新的文献求助10
19秒前
研友_8RyzBZ发布了新的文献求助10
19秒前
小二郎应助夏艳青采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821