GAN‐segNet: A deep generative adversarial segmentation network for brain tumor semantic segmentation

计算机科学 分割 人工智能 深度学习 自编码 模式识别(心理学) 生成对抗网络 图像分割 人工神经网络 市场细分 业务 营销
作者
Shaoguo Cui,Mingjun Wei,Chang Liu,Jingfeng Jiang
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:32 (3): 857-868 被引量:8
标识
DOI:10.1002/ima.22677
摘要

Abstract In this study, we present a novel automatic segmentation method using a neural network model named GAN‐segNet, which can not only identify brain tumors from MRI images but also accurately delineate intratumor regions. Since brain tumors with varying shapes and sizes can appear anywhere in the brain and image quality and contrast of MRI could be inadequate, automatic segmentation remains challenging despite its importance in the clinical workflow. The proposed GAN‐segNet is an innovative modification of the Generative Adversarial Network (GAN) and can efficiently and accurately segment brain tumors. One key innovation of our GAN model is an autoencoder learning representation of input data that were added to the generative network of the above‐mentioned GAN. By doing so, information extracted through convolution operations can be meaningfully regularized. As a result, the scales of extracted features can be controlled by the added autoencoder to preserve detail. Additionally, we propose an innovative loss function based on the concept of focal loss to effectively mitigate the impact of label imbalance. The above‐mentioned combination enables the proposed GAN‐segNet model to improve the segmentation of small intratumor region(s). We demonstrate the proposed method using MRI data available from a public database, that is, Brain Tumor Segmentation Challenge 2018 database (BRATS 2018). Using the proposed GAN‐segNet model, the average Dice scores were 0.8280, 0.9022, and 0.814 for segmenting enhancing tumor core, whole tumor, and tumor core, respectively. Furthermore, positive predictive values for segmenting enhanced tumor core, whole tumor, and tumor core were 0.8496, 0.9270, and 0.8610, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zlenetr发布了新的文献求助10
1秒前
激情的晓博完成签到,获得积分10
1秒前
CodeCraft应助catbird采纳,获得10
1秒前
chen发布了新的文献求助10
1秒前
斑鸠发布了新的文献求助20
2秒前
dudu发布了新的文献求助30
2秒前
2秒前
gu发布了新的文献求助10
3秒前
希希发布了新的文献求助10
3秒前
小石头完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助150
4秒前
ani发布了新的文献求助10
6秒前
英姑应助Sam十九采纳,获得10
7秒前
7秒前
小马甲应助莫愁采纳,获得10
8秒前
小夏发布了新的文献求助10
8秒前
眯眯眼的忆山完成签到,获得积分10
10秒前
daliu完成签到,获得积分0
11秒前
11秒前
LIJIngcan发布了新的文献求助10
12秒前
小虫虫完成签到,获得积分10
12秒前
12秒前
丘比特应助ZiyinChen采纳,获得10
12秒前
机灵的海莲关注了科研通微信公众号
13秒前
14秒前
大个应助dudu采纳,获得30
14秒前
量子星尘发布了新的文献求助150
15秒前
15秒前
WoeL.Aug.11完成签到 ,获得积分10
17秒前
源缘发布了新的文献求助10
17秒前
17秒前
Hmzek发布了新的文献求助10
17秒前
LIJIngcan完成签到,获得积分10
19秒前
19秒前
aaaa完成签到,获得积分10
20秒前
香蕉觅云应助peace采纳,获得10
21秒前
今后应助ljf采纳,获得10
21秒前
21秒前
Yanki完成签到,获得积分10
21秒前
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132277
求助须知:如何正确求助?哪些是违规求助? 4333736
关于积分的说明 13502006
捐赠科研通 4170755
什么是DOI,文献DOI怎么找? 2286630
邀请新用户注册赠送积分活动 1287527
关于科研通互助平台的介绍 1228447