生长素
生物
嫁接
基因
遗传学
植物
拟南芥
化学
突变体
有机化学
聚合物
作者
Ying Yang,Qiaoyu Huang,Xiao‐Fei Wang,Jiaqi Mei,Anket Sharma,Durgesh Kumar Tripathi,Huwei Yuan,Bingsong Zheng
标识
DOI:10.1016/j.plaphy.2021.10.029
摘要
Chinese hickory (Carya cathayensis Sarg.) is an important nut tree species native to China. Excessive plant height and long juvenile phase has restricted development of its industry. Recently, grafting has been used increasingly in production practice of this species to solve the problems above. Previous studies have proved the importance of auxin during Chinese hickory grafting. However, the function of ATP-binding cassette subfamily B (ABCB) genes during Chinese hickory grafting is less studied. In this study, 23 ABCB genes were identified and characterized in Chinese hickory (CcABCBs). The expression profiles of auxin-related ABCBs among tissues, under auxin-related phytohormone treatments and during grafting were determined. CcABCB proteins were divided into half-size and full-size transporters. Many phytohormone-related cis-acting regulatory elements were detected on the promoters of CcABCB genes. Four CcABCB genes homologous to auxin-related AtABCB1, 6, 19 and 20 in Arabidopsis were selected for expression analysis. The four genes displayed varying expression patterns in different tissues of Chinese hickory. Expressions of the four CcABCB genes were regulated by auxin-related phytohormones to varying degrees. Expression levels of the four genes were significantly changed at different stages of grafting, especially 7 days after grafting, indicating their involvement of auxin homeostasis regulation during grafting. In addition, the expressions of CcABCB1 were regulated by IAA and NPA treatments during grafting in comparison with CK treatment, while expressions of the other 3 CcABCB genes were slightly affected. This study will lay the foundation for understanding the potential regulatory roles of CcABCB genes during Chinese hickory grafting.
科研通智能强力驱动
Strongly Powered by AbleSci AI