Transfer learning method for rolling bearing fault diagnosis under different working conditions based on CycleGAN

计算机科学 水准点(测量) 领域(数学分析) 学习迁移 断层(地质) 人工智能 试验数据 特征(语言学) 发电机(电路理论) 传输(计算) 模式识别(心理学) 机器学习 功率(物理) 数学 地震学 地理 程序设计语言 大地测量学 并行计算 语言学 量子力学 哲学 数学分析 地质学 物理
作者
Jiantong Zhao,Wentao Huang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (2): 025003-025003 被引量:17
标识
DOI:10.1088/1361-6501/ac3942
摘要

Abstract In practical bearing fault diagnosis tasks, the available labeled data are often not from the equipment to be diagnosed and cannot cover all manner of working conditions. The adopted data-driven method is required to have a certain degree of cross-domain and cross-working condition transfer learning diagnosis ability. However, limited by the performance of existing transfer learning methods, the potential difference between the source domain and the target domain poses a challenge for the accuracy of transfer diagnosis. In this paper, a cross-working condition data supplement method based on the cycle generative adversarial network (CycleGAN) and a dynamics model is proposed, which can use limited available data to approximate the missing parts of existing data and be used for diagnosis of the target domain. First, we considered the limited experimental data as the target domain, the simulation data corresponding to the working condition as the source domain and used the working condition as the benchmark to constrain the data correspondence between the two datasets. We then used the CycleGAN model to learn the feature mapping from simulation to experiment. Second, based on the working condition of the data to be tested, the corresponding simulation data were input into the trained generator to obtain labeled data with experimental characteristics under the corresponding working conditions, and transferred the dataset as the source domain data to the data to be tested. In the test using self-made simulation and experimental datasets, combined with the transfer learning method based on the probability distribution adaptation, it was shown that the proposed method could effectively improve the diagnostic impact of the single transfer learning method in cross-domain and cross-working conditions when the working condition span was large.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安诺完成签到,获得积分10
1秒前
yysghr发布了新的文献求助10
2秒前
Chaiyuan完成签到 ,获得积分10
2秒前
3秒前
竹桃完成签到 ,获得积分10
4秒前
peri7完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
吉以寒完成签到,获得积分10
8秒前
9秒前
li发布了新的文献求助10
9秒前
坚强谷槐发布了新的文献求助10
10秒前
翟炳发布了新的文献求助10
11秒前
12秒前
单薄紫菜完成签到,获得积分10
12秒前
13秒前
kl完成签到 ,获得积分10
13秒前
小龙发布了新的文献求助10
14秒前
SASI完成签到 ,获得积分10
21秒前
翟炳完成签到,获得积分10
22秒前
lss完成签到,获得积分10
23秒前
Hello应助bing采纳,获得10
24秒前
24秒前
JamesPei应助yysghr采纳,获得10
25秒前
Ava应助waikeyan采纳,获得10
25秒前
run发布了新的文献求助10
26秒前
26秒前
默默安双完成签到 ,获得积分10
28秒前
所所应助阳阳阳采纳,获得10
29秒前
高美美发布了新的文献求助10
30秒前
31秒前
CipherSage应助max采纳,获得10
31秒前
路过蜻蜓完成签到,获得积分10
32秒前
32秒前
33秒前
摇摇奶昔发布了新的文献求助10
33秒前
33秒前
ZYH完成签到 ,获得积分10
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150