Transfer learning method for rolling bearing fault diagnosis under different working conditions based on CycleGAN

计算机科学 水准点(测量) 领域(数学分析) 学习迁移 断层(地质) 人工智能 试验数据 特征(语言学) 发电机(电路理论) 传输(计算) 模式识别(心理学) 机器学习 功率(物理) 数学 地震学 地理 程序设计语言 大地测量学 并行计算 语言学 量子力学 哲学 数学分析 地质学 物理
作者
Jiantong Zhao,Wentao Huang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (2): 025003-025003 被引量:23
标识
DOI:10.1088/1361-6501/ac3942
摘要

Abstract In practical bearing fault diagnosis tasks, the available labeled data are often not from the equipment to be diagnosed and cannot cover all manner of working conditions. The adopted data-driven method is required to have a certain degree of cross-domain and cross-working condition transfer learning diagnosis ability. However, limited by the performance of existing transfer learning methods, the potential difference between the source domain and the target domain poses a challenge for the accuracy of transfer diagnosis. In this paper, a cross-working condition data supplement method based on the cycle generative adversarial network (CycleGAN) and a dynamics model is proposed, which can use limited available data to approximate the missing parts of existing data and be used for diagnosis of the target domain. First, we considered the limited experimental data as the target domain, the simulation data corresponding to the working condition as the source domain and used the working condition as the benchmark to constrain the data correspondence between the two datasets. We then used the CycleGAN model to learn the feature mapping from simulation to experiment. Second, based on the working condition of the data to be tested, the corresponding simulation data were input into the trained generator to obtain labeled data with experimental characteristics under the corresponding working conditions, and transferred the dataset as the source domain data to the data to be tested. In the test using self-made simulation and experimental datasets, combined with the transfer learning method based on the probability distribution adaptation, it was shown that the proposed method could effectively improve the diagnostic impact of the single transfer learning method in cross-domain and cross-working conditions when the working condition span was large.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
linp发布了新的文献求助10
2秒前
颖火虫完成签到,获得积分10
2秒前
坎坎坷坷k完成签到,获得积分10
2秒前
2秒前
搞甚发布了新的文献求助10
3秒前
wanci应助完美梨愁采纳,获得10
3秒前
李旭关注了科研通微信公众号
3秒前
kiyo发布了新的文献求助30
3秒前
3秒前
搞甚发布了新的文献求助10
4秒前
素衣发布了新的文献求助10
4秒前
4秒前
Freq完成签到 ,获得积分10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
5秒前
搞甚发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
DTOU应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
坎坎坷坷k发布了新的文献求助10
5秒前
科研通AI6.1应助ZhangY采纳,获得10
5秒前
5秒前
星辰大海应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
6秒前
谨慎的凝丝完成签到 ,获得积分10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
wanci应助Zyq1231采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
smottom应助科研通管家采纳,获得10
6秒前
Ren完成签到,获得积分10
7秒前
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784905
求助须知:如何正确求助?哪些是违规求助? 5684415
关于积分的说明 15465839
捐赠科研通 4913887
什么是DOI,文献DOI怎么找? 2644971
邀请新用户注册赠送积分活动 1592868
关于科研通互助平台的介绍 1547242