BPSL: a new rumor source location algorithm based on the time-stamp back propagation in social networks

计算机科学 快照(计算机存储) 谣言 随机性 观察员(物理) 期望最大化算法 算法 数据挖掘 最大似然 数学 统计 政治学 公共关系 量子力学 操作系统 物理
作者
Liqing Qiu,Shiqi Sai,Moji Wei
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:52 (8): 8603-8615 被引量:4
标识
DOI:10.1007/s10489-021-02919-w
摘要

Finding a rumor source is a major issue in the analysis of social networks. In this problem, the rumor source is usually estimated from a given diffusion snapshot. How to estimate the rumor source accurately is a challenging problem. Usually, the rumor source location problem is regarded as a node ranking problem. However, most of the existing algorithms ignore the structure of the infected subgraph or the randomness of the rumor spread. Therefore, they have defects in applicability and accuracy. To solve this problem, this paper takes into account the above two aspects at the same time, and propose a new algorithm to locate the rumor source, which is called Back Propagation Source Location(BPSL). The proposed algorithm contains an estimation method which is based on the time-stamp back propagation. This method makes the proposed algorithm’s accuracy outperform previous algorithms’ accuracy. Moreover, the susceptible-infected model is used to simulate the information spread of the networks. The steps of the proposed algorithm can be stated as follows. First, a new method based on the influence maximization is proposed to determine the observer set, which can greatly reduce the number of observer nodes. Second, a new estimation method based on the time-stamp back propagation is proposed to locate the source, which makes the proposed algorithm more accuracy and doesn’t change the structure of infected subgraph at the same time. Finally, the experimental results on two artificial networks and four real-world networks show the superiority of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucky完成签到,获得积分20
刚刚
映寒完成签到,获得积分10
1秒前
SciGPT应助科yt采纳,获得10
1秒前
1秒前
嘎嘎发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
4秒前
4秒前
Faye完成签到 ,获得积分10
5秒前
5秒前
动听幻儿发布了新的文献求助10
5秒前
6秒前
笠柚完成签到,获得积分10
6秒前
ddz发布了新的文献求助10
7秒前
7秒前
7秒前
鲤鱼安青发布了新的文献求助10
7秒前
无花果应助tangshijun采纳,获得10
8秒前
X欣发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
华仔应助飞云采纳,获得10
9秒前
9秒前
9秒前
9秒前
wjx发布了新的文献求助10
10秒前
10秒前
10秒前
Tina发布了新的文献求助10
10秒前
李端完成签到,获得积分10
10秒前
霸气纹发布了新的文献求助10
11秒前
哈哈哈哈发布了新的文献求助10
12秒前
13秒前
Goodluck发布了新的文献求助10
13秒前
123发布了新的文献求助10
13秒前
动听幻儿完成签到,获得积分10
13秒前
13秒前
义气凝阳发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974943
求助须知:如何正确求助?哪些是违规求助? 3519467
关于积分的说明 11198482
捐赠科研通 3255728
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877261
科研通“疑难数据库(出版商)”最低求助积分说明 806224