表皮生长因子受体抑制剂
癌症
信号转导
药品
表皮生长因子受体
药物发现
药物开发
癌症研究
医学
药理学
化学
生物信息学
生物
内科学
生物化学
作者
Liping Hu,Mengmeng Fan,Shengmin Shi,Xiaomeng Song,Fei Wang,Huan He,Baohui Qi
标识
DOI:10.1016/j.ejmech.2021.113963
摘要
The EGFR family play a significant role in cell signal transduction and their overexpression is implicated in the pathogenesis of numerous human solid cancers. Inhibition of the EGFR-mediated signaling pathways by EGFR inhibitors is a widely used strategy for the treatment of cancers. In most cases, the EGFR inhibitors used in clinic were only effective when the cancer cells harbored specific activating EGFR mutations which appeared to preserve the ligand-dependency of receptor activation but altered the pattern of downstream signaling pathways. Moreover, cancer is a kind of multifactorial disease, and therefore manipulating a single target may result in treatment failure. Although drug combinations for the treatment of cancers proved to be successful, the use of two or more drugs concurrently still was a challenge in clinical therapy owing to various dose-limiting toxicities and drug-drug interactions caused by pharmacokinetic profiles changed. Therefore, a single drug targeting two or multiple targets could serve as an effective strategy for the treatment of cancers. In recent, drugs with diverse pharmacological effects have been shown to be more advantageous than combination therapies due to their lower incidences of side effects and more resilient therapies. Accordingly, dual target-single-agent strategy has become a popular field for cancer treatment, and researchers became more and more interest in the development of novel dual-target drugs in recent years. In this review, we briefly introduce the EGFR family proteins and synergisms between EGFR and other anticancer targets, and summarizes the development of potential dual target inhibitors based on wild-type and/or mutant EGFR for the treatment of solid cancers in the past five years. Additionally, the rational design and SARs of these dual target agents are also presented in detailed, which will lay a significant foundation for the further development of novel EGFR-based dual inhibitors with excellent druggability.
科研通智能强力驱动
Strongly Powered by AbleSci AI