MRC-LSTM: A Hybrid Approach of Multi-scale Residual CNN and LSTM to Predict Bitcoin Price

数字加密货币 计算机科学 残余物 波动性(金融) 人工智能 机器学习 计量经济学 多元统计 时间序列 系列(地层学) 卷积神经网络 算法 经济 计算机安全 生物 古生物学
作者
Qiutong Guo,Shun Lei,Qing Ye,Zhiyang Fang
标识
DOI:10.1109/ijcnn52387.2021.9534453
摘要

Bitcoin, one of the major cryptocurrencies, presents great opportunities and challenges with its tremendous potential returns accompanying high risks. The high volatility of Bitcoin and the complex factors affecting them make the study of effective price forecasting methods of great practical importance to financial investors and researchers worldwide. In this paper, we propose a novel approach called MRC-LSTM, which combines a Multi-scale Residual Convolutional neural network (MRC) and a Long Short-Term Memory (LSTM) to implement Bitcoin closing price prediction. Specifically, the Multi-scale residual module is based on one-dimensional convolution, which is not only capable of adaptive detecting features of different time scales in multivariate time series, but also enables the fusion of these features. LSTM has the ability to learn long-term dependencies in series, which is widely used in financial time series forecasting. By mixing these two methods, the model is able to obtain highly expressive features and efficiently learn trends and interactions of multivariate time series. In the study, the impact of external factors such as macroeconomic variables and investor attention on the Bitcoin price is considered in addition to the trading information of the Bitcoin market. We performed experiments to predict the daily closing price of Bitcoin (USD), and the experimental results show that MRC-LSTM significantly outperforms a variety of other network structures. Furthermore, we conduct additional experiments on two other cryptocurrencies, Ethereum and Litecoin, to further confirm the effectiveness of the MRCLSTM in short-term forecasting for multivariate time series of cryptocurrencies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huoxu发布了新的文献求助10
刚刚
tobasco发布了新的文献求助10
刚刚
小鱼完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
man发布了新的文献求助20
1秒前
Yuzy完成签到,获得积分20
1秒前
弓长木易完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
爱笑万宝路完成签到 ,获得积分10
2秒前
zuly完成签到,获得积分10
2秒前
Jasper应助做梦采纳,获得10
2秒前
wzc发布了新的文献求助10
3秒前
shen完成签到 ,获得积分20
3秒前
3秒前
3秒前
4秒前
4秒前
ch发布了新的文献求助10
4秒前
chenchen完成签到,获得积分10
5秒前
自然小鸭子完成签到,获得积分10
5秒前
6秒前
Twonej应助zuly采纳,获得30
6秒前
王一鸣发布了新的文献求助10
6秒前
小蘑菇应助陈家傲采纳,获得10
6秒前
7秒前
Manchester完成签到,获得积分10
7秒前
7秒前
元谷雪发布了新的文献求助10
7秒前
月九完成签到,获得积分10
8秒前
evelyn发布了新的文献求助10
8秒前
8秒前
Ava应助唉科研太难了采纳,获得10
8秒前
智者雨人完成签到 ,获得积分10
8秒前
Cc完成签到,获得积分10
8秒前
顾矜应助云深不知处采纳,获得10
9秒前
Yuzy发布了新的文献求助10
9秒前
Sun发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659205
求助须知:如何正确求助?哪些是违规求助? 4827677
关于积分的说明 15085891
捐赠科研通 4817891
什么是DOI,文献DOI怎么找? 2578393
邀请新用户注册赠送积分活动 1533047
关于科研通互助平台的介绍 1491746