MRC-LSTM: A Hybrid Approach of Multi-scale Residual CNN and LSTM to Predict Bitcoin Price

数字加密货币 计算机科学 残余物 波动性(金融) 人工智能 机器学习 计量经济学 多元统计 时间序列 系列(地层学) 卷积神经网络 算法 经济 计算机安全 生物 古生物学
作者
Qiutong Guo,Shun Lei,Qing Ye,Zhiyang Fang
标识
DOI:10.1109/ijcnn52387.2021.9534453
摘要

Bitcoin, one of the major cryptocurrencies, presents great opportunities and challenges with its tremendous potential returns accompanying high risks. The high volatility of Bitcoin and the complex factors affecting them make the study of effective price forecasting methods of great practical importance to financial investors and researchers worldwide. In this paper, we propose a novel approach called MRC-LSTM, which combines a Multi-scale Residual Convolutional neural network (MRC) and a Long Short-Term Memory (LSTM) to implement Bitcoin closing price prediction. Specifically, the Multi-scale residual module is based on one-dimensional convolution, which is not only capable of adaptive detecting features of different time scales in multivariate time series, but also enables the fusion of these features. LSTM has the ability to learn long-term dependencies in series, which is widely used in financial time series forecasting. By mixing these two methods, the model is able to obtain highly expressive features and efficiently learn trends and interactions of multivariate time series. In the study, the impact of external factors such as macroeconomic variables and investor attention on the Bitcoin price is considered in addition to the trading information of the Bitcoin market. We performed experiments to predict the daily closing price of Bitcoin (USD), and the experimental results show that MRC-LSTM significantly outperforms a variety of other network structures. Furthermore, we conduct additional experiments on two other cryptocurrencies, Ethereum and Litecoin, to further confirm the effectiveness of the MRCLSTM in short-term forecasting for multivariate time series of cryptocurrencies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
替我活着发布了新的文献求助10
刚刚
李健应助敬业乐群采纳,获得10
刚刚
找论文的牛马完成签到,获得积分10
刚刚
1秒前
1秒前
善良飞丹完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
3秒前
冷傲雪糕完成签到,获得积分10
3秒前
yun完成签到,获得积分10
4秒前
风格化橙发布了新的文献求助10
4秒前
CipherSage应助鲤鱼谷秋采纳,获得10
4秒前
5秒前
5秒前
Hydro发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
TYT发布了新的文献求助10
6秒前
绞股蓝发布了新的文献求助10
6秒前
汉堡包应助但行好事采纳,获得10
6秒前
yj完成签到,获得积分10
6秒前
6秒前
liuyuxin发布了新的文献求助10
7秒前
带头大哥应助认真的小笼包采纳,获得100
7秒前
old赵应助tooty采纳,获得10
7秒前
酷波er应助玖玖采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
AAAA发布了新的文献求助10
10秒前
风格化橙完成签到,获得积分10
10秒前
上官若男应助念念采纳,获得10
11秒前
看不懂发布了新的文献求助10
11秒前
酸xxx发布了新的文献求助10
11秒前
领导范儿应助丂枧采纳,获得10
11秒前
12秒前
小魏同学完成签到,获得积分10
12秒前
夏蓉完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078