已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRC-LSTM: A Hybrid Approach of Multi-scale Residual CNN and LSTM to Predict Bitcoin Price

数字加密货币 计算机科学 残余物 波动性(金融) 人工智能 机器学习 计量经济学 多元统计 时间序列 系列(地层学) 卷积神经网络 算法 经济 计算机安全 生物 古生物学
作者
Qiutong Guo,Shun Lei,Qing Ye,Zhiyang Fang
标识
DOI:10.1109/ijcnn52387.2021.9534453
摘要

Bitcoin, one of the major cryptocurrencies, presents great opportunities and challenges with its tremendous potential returns accompanying high risks. The high volatility of Bitcoin and the complex factors affecting them make the study of effective price forecasting methods of great practical importance to financial investors and researchers worldwide. In this paper, we propose a novel approach called MRC-LSTM, which combines a Multi-scale Residual Convolutional neural network (MRC) and a Long Short-Term Memory (LSTM) to implement Bitcoin closing price prediction. Specifically, the Multi-scale residual module is based on one-dimensional convolution, which is not only capable of adaptive detecting features of different time scales in multivariate time series, but also enables the fusion of these features. LSTM has the ability to learn long-term dependencies in series, which is widely used in financial time series forecasting. By mixing these two methods, the model is able to obtain highly expressive features and efficiently learn trends and interactions of multivariate time series. In the study, the impact of external factors such as macroeconomic variables and investor attention on the Bitcoin price is considered in addition to the trading information of the Bitcoin market. We performed experiments to predict the daily closing price of Bitcoin (USD), and the experimental results show that MRC-LSTM significantly outperforms a variety of other network structures. Furthermore, we conduct additional experiments on two other cryptocurrencies, Ethereum and Litecoin, to further confirm the effectiveness of the MRCLSTM in short-term forecasting for multivariate time series of cryptocurrencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cell完成签到 ,获得积分10
刚刚
jjj发布了新的文献求助10
1秒前
hyhyhyhy发布了新的文献求助10
2秒前
夜雨声烦发布了新的文献求助10
5秒前
6秒前
在水一方应助hyhyhyhy采纳,获得10
7秒前
8秒前
自由的雁完成签到 ,获得积分10
8秒前
侯恺欣完成签到,获得积分10
10秒前
栗荔完成签到 ,获得积分10
10秒前
ddddd发布了新的文献求助10
11秒前
火龙果发布了新的文献求助10
12秒前
13秒前
NexusExplorer应助认真的又夏采纳,获得10
15秒前
ljc发布了新的文献求助10
18秒前
蔡团队无敌美少女战士完成签到,获得积分10
21秒前
23秒前
小马甲应助Leffzeng采纳,获得10
24秒前
乐乐应助体贴苞络采纳,获得10
25秒前
ljc完成签到,获得积分10
28秒前
28秒前
科目三应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
852应助魔幻的火采纳,获得10
31秒前
顺利的飞荷完成签到,获得积分0
34秒前
zho应助一三二五七采纳,获得20
36秒前
Leffzeng完成签到,获得积分10
37秒前
英俊的铭应助刘耀文女友采纳,获得10
37秒前
彭于晏应助秋半雪采纳,获得10
37秒前
酷波er应助夜雨声烦采纳,获得10
38秒前
JamesPei应助shangguan采纳,获得10
40秒前
上官若男应助dcr4328采纳,获得10
41秒前
42秒前
怀特steel完成签到,获得积分10
43秒前
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994300
求助须知:如何正确求助?哪些是违规求助? 3534729
关于积分的说明 11266406
捐赠科研通 3274658
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883283
科研通“疑难数据库(出版商)”最低求助积分说明 809731