MRC-LSTM: A Hybrid Approach of Multi-scale Residual CNN and LSTM to Predict Bitcoin Price

数字加密货币 计算机科学 残余物 波动性(金融) 人工智能 机器学习 计量经济学 多元统计 时间序列 系列(地层学) 卷积神经网络 算法 经济 计算机安全 生物 古生物学
作者
Qiutong Guo,Shun Lei,Qing Ye,Zhiyang Fang
标识
DOI:10.1109/ijcnn52387.2021.9534453
摘要

Bitcoin, one of the major cryptocurrencies, presents great opportunities and challenges with its tremendous potential returns accompanying high risks. The high volatility of Bitcoin and the complex factors affecting them make the study of effective price forecasting methods of great practical importance to financial investors and researchers worldwide. In this paper, we propose a novel approach called MRC-LSTM, which combines a Multi-scale Residual Convolutional neural network (MRC) and a Long Short-Term Memory (LSTM) to implement Bitcoin closing price prediction. Specifically, the Multi-scale residual module is based on one-dimensional convolution, which is not only capable of adaptive detecting features of different time scales in multivariate time series, but also enables the fusion of these features. LSTM has the ability to learn long-term dependencies in series, which is widely used in financial time series forecasting. By mixing these two methods, the model is able to obtain highly expressive features and efficiently learn trends and interactions of multivariate time series. In the study, the impact of external factors such as macroeconomic variables and investor attention on the Bitcoin price is considered in addition to the trading information of the Bitcoin market. We performed experiments to predict the daily closing price of Bitcoin (USD), and the experimental results show that MRC-LSTM significantly outperforms a variety of other network structures. Furthermore, we conduct additional experiments on two other cryptocurrencies, Ethereum and Litecoin, to further confirm the effectiveness of the MRCLSTM in short-term forecasting for multivariate time series of cryptocurrencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵懂的钢笔完成签到 ,获得积分10
2秒前
GongSyi完成签到 ,获得积分10
3秒前
DONNYTIO完成签到,获得积分10
3秒前
zwzxtx完成签到 ,获得积分10
4秒前
温暖芷文完成签到,获得积分10
6秒前
hao完成签到,获得积分10
7秒前
啾啾完成签到,获得积分10
9秒前
无花果应助HHXXTTXS采纳,获得10
9秒前
赖建琛完成签到 ,获得积分10
11秒前
licheng完成签到,获得积分10
12秒前
夜泊完成签到 ,获得积分10
13秒前
默默的皮牙子完成签到,获得积分10
13秒前
xy小侠女完成签到,获得积分10
13秒前
奋斗小公主完成签到,获得积分10
14秒前
年月日完成签到,获得积分10
14秒前
万能图书馆应助114422采纳,获得10
14秒前
楚之杰者完成签到,获得积分10
14秒前
星丶完成签到 ,获得积分10
17秒前
呼呼呼嘟嘟嘟应助Atopos采纳,获得10
17秒前
hai完成签到,获得积分10
17秒前
Lynn完成签到,获得积分10
18秒前
pawpaw009完成签到,获得积分10
18秒前
雨点完成签到,获得积分10
19秒前
北北完成签到 ,获得积分10
19秒前
魔幻友菱完成签到 ,获得积分10
19秒前
marongzhi完成签到 ,获得积分10
20秒前
孤独雨梅完成签到,获得积分10
20秒前
冷傲的帽子完成签到,获得积分10
20秒前
火星上的小蚂蚁完成签到,获得积分10
20秒前
zs完成签到,获得积分10
20秒前
杂菜流完成签到,获得积分10
23秒前
风趣问儿完成签到,获得积分10
23秒前
呋喃完成签到,获得积分10
24秒前
秀丽烨霖应助任生平采纳,获得10
25秒前
冷傲迎梦完成签到,获得积分10
26秒前
小幸运R完成签到 ,获得积分10
26秒前
26秒前
小蚂蚁完成签到 ,获得积分10
27秒前
开心叫兽完成签到 ,获得积分10
27秒前
搬砖美少女完成签到,获得积分10
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229819
求助须知:如何正确求助?哪些是违规求助? 2877393
关于积分的说明 8198973
捐赠科研通 2544788
什么是DOI,文献DOI怎么找? 1374662
科研通“疑难数据库(出版商)”最低求助积分说明 647033
邀请新用户注册赠送积分活动 621851