最大后验估计
先验概率
数学
算法
估计员
数学优化
反褶积
图像复原
迭代重建
计算机科学
贝叶斯概率
图像处理
人工智能
统计
图像(数学)
最大似然
作者
Dan Yao,Stephen McLaughlin,Yoann Altmann
出处
期刊:IEEE transactions on image processing
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:31: 5762-5773
被引量:6
标识
DOI:10.1109/tip.2022.3202092
摘要
This paper presents a scalable approximate Bayesian method for image restoration using total variation (TV) priors. In contrast to most optimization methods based on maximum a posteriori estimation, we use the expectation propagation (EP) framework to approximate minimum mean squared error (MMSE) estimators and marginal (pixel-wise) variances, without resorting to Monte Carlo sampling. For the classical anisotropic TV-based prior, we also propose an iterative scheme to automatically adjust the regularization parameter via expectation-maximization (EM). Using Gaussian approximating densities with diagonal covariance matrices, the resulting method allows highly parallelizable steps and can scale to large images for denoising, deconvolution and compressive sensing (CS) problems. The simulation results illustrate that such EP methods can provide a posteriori estimates on par with those obtained via sampling methods but at a fraction of the computational cost. Moreover, EP does not exhibit strong underestimation of posteriori variances, in contrast to variational Bayes alternatives.
科研通智能强力驱动
Strongly Powered by AbleSci AI