Parametric Doppler correction analysis for wayside acoustic bearing fault diagnosis

失真(音乐) 算法 声学 信号(编程语言) 振幅畸变 计算机科学 多普勒效应 能量(信号处理) 控制理论(社会学) 数学 非线性失真 人工智能 物理 电信 放大器 统计 程序设计语言 控制(管理) 带宽(计算) 天文
作者
Xiaoxi Ding,Yulan Li,Jiawei Xiao,Qingbo He,Xiaoqing Yang,Yimin Shao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:166: 108375-108375 被引量:12
标识
DOI:10.1016/j.ymssp.2021.108375
摘要

Wayside acoustic system plays a crucial role in monitoring and diagnosing the status of train wheel bearings. However, due to the signal distortion caused by Doppler effect, the diagnosis accuracy will be seriously disturbed. In this manner, this paper proposes a model-driven Doppler distortion self-tuning method in theory, named as parametric Doppler correction analysis (PDCA). Different from traditional methods, such as instantaneous frequency tracking and Doppler distortion sparse representation, the proposed method aims to abstractly construct a physical model of acoustic signal distortion propagation based on Morse acoustic theory, where the acoustic forward propagation model and reverse reconstruction model are simultaneously built. The scheme consists of four basic steps. Firstly, the physical model with amplitude modulation operator and frequency shift operator is described for the distortion process. Secondly, the pseudo transition signal with the characteristics of energy accumulation and no distortion is obtained via a construction of frequency rearrangement operator and amplitude demodulation operator. Then, pseudo Doppler correction (PDC) is presented to solve the frequency distortion of the received signal, where a high energy accumulation for frequency distribution is designed as optimization function. Especially, quasi Newton algorithm L-BFGS is used to realize the adaptive learning for distortion parameters. Finally, through time-domain interpolation resampling (TIR) technique, the corrected signal can be analytically reconstructed with the optimal parameters. Applying the PDCA scheme to simulated signals and experimental signals, its validity is verified. The comparison with the instantaneous frequency ridge extraction approach further indicates the proposed model-driven method can reach a more accurate correction result in a faster and adaptive process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
芭娜55完成签到 ,获得积分10
2秒前
丘比特应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
松花蛋完成签到,获得积分10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
时闲应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得30
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
燕儿完成签到,获得积分10
4秒前
qian完成签到,获得积分20
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
小苏同学应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得20
4秒前
ding应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
大个应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
爱因斯坦完成签到,获得积分10
6秒前
小豆豆应助feng采纳,获得10
6秒前
负责的绍辉完成签到,获得积分10
7秒前
chenzui发布了新的文献求助10
7秒前
李建勋完成签到,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965950
求助须知:如何正确求助?哪些是违规求助? 3511289
关于积分的说明 11157176
捐赠科研通 3245859
什么是DOI,文献DOI怎么找? 1793182
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286