Parametric Doppler correction analysis for wayside acoustic bearing fault diagnosis

失真(音乐) 算法 声学 信号(编程语言) 振幅畸变 计算机科学 多普勒效应 能量(信号处理) 控制理论(社会学) 数学 非线性失真 人工智能 物理 电信 放大器 统计 程序设计语言 控制(管理) 带宽(计算) 天文
作者
Xiaoxi Ding,Yulan Li,Jiawei Xiao,Qingbo He,Xiaoqing Yang,Yimin Shao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:166: 108375-108375 被引量:12
标识
DOI:10.1016/j.ymssp.2021.108375
摘要

Wayside acoustic system plays a crucial role in monitoring and diagnosing the status of train wheel bearings. However, due to the signal distortion caused by Doppler effect, the diagnosis accuracy will be seriously disturbed. In this manner, this paper proposes a model-driven Doppler distortion self-tuning method in theory, named as parametric Doppler correction analysis (PDCA). Different from traditional methods, such as instantaneous frequency tracking and Doppler distortion sparse representation, the proposed method aims to abstractly construct a physical model of acoustic signal distortion propagation based on Morse acoustic theory, where the acoustic forward propagation model and reverse reconstruction model are simultaneously built. The scheme consists of four basic steps. Firstly, the physical model with amplitude modulation operator and frequency shift operator is described for the distortion process. Secondly, the pseudo transition signal with the characteristics of energy accumulation and no distortion is obtained via a construction of frequency rearrangement operator and amplitude demodulation operator. Then, pseudo Doppler correction (PDC) is presented to solve the frequency distortion of the received signal, where a high energy accumulation for frequency distribution is designed as optimization function. Especially, quasi Newton algorithm L-BFGS is used to realize the adaptive learning for distortion parameters. Finally, through time-domain interpolation resampling (TIR) technique, the corrected signal can be analytically reconstructed with the optimal parameters. Applying the PDCA scheme to simulated signals and experimental signals, its validity is verified. The comparison with the instantaneous frequency ridge extraction approach further indicates the proposed model-driven method can reach a more accurate correction result in a faster and adaptive process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助Roxie采纳,获得30
刚刚
123发布了新的文献求助10
刚刚
crystal完成签到,获得积分10
刚刚
upupup完成签到,获得积分10
刚刚
刚刚
鱼柒完成签到,获得积分10
1秒前
珊明治完成签到,获得积分10
1秒前
mmol发布了新的文献求助10
2秒前
2秒前
露露发布了新的文献求助10
2秒前
2秒前
向向完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
Wangjingxuan完成签到,获得积分10
3秒前
kuyng发布了新的文献求助10
3秒前
清爽的新瑶完成签到,获得积分10
3秒前
磨磨完成签到,获得积分10
4秒前
科研通AI6应助碧蓝之柔采纳,获得10
4秒前
4秒前
慕青应助我是狗采纳,获得10
4秒前
5秒前
研友_QLXagn发布了新的文献求助10
5秒前
5秒前
5秒前
隐形的谷槐完成签到 ,获得积分10
6秒前
6秒前
DreamSeker8发布了新的文献求助10
7秒前
奋斗发布了新的文献求助10
7秒前
7秒前
天真百招发布了新的文献求助10
8秒前
夕荀发布了新的文献求助10
8秒前
李小新完成签到 ,获得积分10
8秒前
言诚开发布了新的文献求助10
9秒前
9秒前
姬因发布了新的文献求助10
9秒前
9秒前
FashionBoy应助大炮轰地球采纳,获得10
9秒前
兴奋莞发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608584
求助须知:如何正确求助?哪些是违规求助? 4693308
关于积分的说明 14877618
捐赠科研通 4718061
什么是DOI,文献DOI怎么找? 2544332
邀请新用户注册赠送积分活动 1509463
关于科研通互助平台的介绍 1472844