碳汇
环境科学
水槽(地理)
植被(病理学)
生态学
碳中和
荒漠化
温室气体
环境资源管理
地理
生态系统
生物
地图学
医学
病理
作者
Hongqiong Guo,Qiang Yu,Yanru Pei,Ge Wang,Depeng Yue
标识
DOI:10.1016/j.jclepro.2021.129156
摘要
Carbon neutrality is a long-term climate goal in the context of global warming and can be achieved by reducing carbon emissions and increasing carbon sinks. Vegetation has a very important and irreplaceable role in increasing carbon sinks, but it is often destroyed, especially in desertification and mining areas. Therefore, restoration of the vegetation in these areas is essential. Seeking the optimal solution for landscape spatial structure through adjustment and optimization can promote ecological processes, improve environment and soil conditions on a large scale, provide favorable conditions for vegetation growth, and is an effective way to achieve vegetation restoration to increase carbon sinks. Here, a targeted landscape spatial structure optimization scheme called EFCT model was developed for complex ecological situation of Ordos, with the goal of increasing carbon sinks to achieve carbon neutrality. The scheme identified areas where the landscape spatial structure needs to be optimized and the direction of optimization based on the differences in the synergy degree between ecological function and connectivity of the patches. The study also compared the carbon sink function and robustness of the landscape spatial structure before and after optimization according to the scheme. The results show that the patches in the landscape spatial structure of Ordos form four separate clusters distributed in a differentiated east-west part of the structure, with higher ecological function and poorer connectivity in the east and the opposite in the west. In the landscape spatial structure optimized by the EFCT model, the ecological function of 42 patches was enhanced, and 19 patches and 44 corridors were added. The total carbon sink in the optimized structure increased by 31.51% compared to the unoptimized structure, mainly due to the improved ecological function of the grassland patches in the western structure, in addition to the carbon sink contribution of the new patches and corridors. At the same time, the connectivity between the four clusters had been enhanced and the structure was more coherent and stable.
科研通智能强力驱动
Strongly Powered by AbleSci AI