EGAT: Edge-Featured Graph Attention Network

计算机科学 图形 杠杆(统计) 边缘设备 特征学习 GSM演进的增强数据速率 边缘计算 理论计算机科学 人工智能 云计算 操作系统
作者
Ziming Wang,Jun Chen,Haopeng Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-264 被引量:60
标识
DOI:10.1007/978-3-030-86362-3_21
摘要

Most state-of-the-art Graph Neural Networks focus on node features in the learning process but ignore edge features. However, edge features also contain essential information in real-world, such as financial graphs. Node-centric approaches are suboptimal in edge-sensitive graphs since edge features are not adequately utilized. To address this problem, we present the Edge-Featured Graph Attention Network (EGAT) to leverage edge features in the graph feature representation. Our model is based on the edge-integrated attention mechanism, where both node and edge features are included in the calculation of the message and attention weights. In addition, the importance of edge information suggests that the edge features should be updated to learn high-level representation. So we perform edge updating with the integration of the features of connected nodes. In contrast to edge-node switching, our model acquires the adjacent edge features with the node-transit strategy, avoiding significant lift of computational complexity. Then we employ a multi-scale merge strategy, which concatenates features of every layer to construct hierarchical representation. Moreover, our model can be adapted to domain-specific graph neural networks, which further extends the application scenarios. Experiments show that our model achieves or matches the state-of-the-art on both node-sensitive and edge-sensitive datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白水发布了新的文献求助10
刚刚
酥脆小鱼发布了新的文献求助10
刚刚
刚刚
1秒前
cbj应助加菲丰丰采纳,获得10
1秒前
橘园发布了新的文献求助10
1秒前
俊秀的傲松完成签到,获得积分10
1秒前
1秒前
hly发布了新的文献求助10
2秒前
3秒前
3秒前
情怀应助陈辰晨采纳,获得10
3秒前
李健应助han采纳,获得10
4秒前
fd123完成签到,获得积分10
4秒前
4秒前
5秒前
星辰大海应助淡然的夜柳采纳,获得10
5秒前
天天快乐应助123采纳,获得10
6秒前
6秒前
酷波er应助viho采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
无极微光应助赫青亦采纳,获得20
7秒前
7秒前
7秒前
shanshui发布了新的文献求助10
8秒前
LILI2发布了新的文献求助10
8秒前
Frank应助仁爱的寻凝采纳,获得10
8秒前
9秒前
9秒前
xqf发布了新的文献求助10
10秒前
脑洞疼应助癞皮狗采纳,获得10
10秒前
典雅易蓉完成签到,获得积分10
10秒前
上官若男应助阿敬采纳,获得30
11秒前
波特卡斯D艾斯完成签到 ,获得积分10
11秒前
彗星入梦完成签到 ,获得积分10
12秒前
Twbzz发布了新的文献求助10
12秒前
科研通AI6应助美晶采纳,获得10
12秒前
HONG发布了新的文献求助10
12秒前
Morri发布了新的文献求助10
13秒前
HeAuBook完成签到,获得积分0
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507945
求助须知:如何正确求助?哪些是违规求助? 4603407
关于积分的说明 14485334
捐赠科研通 4537440
什么是DOI,文献DOI怎么找? 2486673
邀请新用户注册赠送积分活动 1469203
关于科研通互助平台的介绍 1441568