EGAT: Edge-Featured Graph Attention Network

计算机科学 图形 杠杆(统计) 边缘设备 特征学习 GSM演进的增强数据速率 边缘计算 理论计算机科学 人工智能 云计算 操作系统
作者
Ziming Wang,Jun Chen,Haopeng Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-264 被引量:34
标识
DOI:10.1007/978-3-030-86362-3_21
摘要

Most state-of-the-art Graph Neural Networks focus on node features in the learning process but ignore edge features. However, edge features also contain essential information in real-world, such as financial graphs. Node-centric approaches are suboptimal in edge-sensitive graphs since edge features are not adequately utilized. To address this problem, we present the Edge-Featured Graph Attention Network (EGAT) to leverage edge features in the graph feature representation. Our model is based on the edge-integrated attention mechanism, where both node and edge features are included in the calculation of the message and attention weights. In addition, the importance of edge information suggests that the edge features should be updated to learn high-level representation. So we perform edge updating with the integration of the features of connected nodes. In contrast to edge-node switching, our model acquires the adjacent edge features with the node-transit strategy, avoiding significant lift of computational complexity. Then we employ a multi-scale merge strategy, which concatenates features of every layer to construct hierarchical representation. Moreover, our model can be adapted to domain-specific graph neural networks, which further extends the application scenarios. Experiments show that our model achieves or matches the state-of-the-art on both node-sensitive and edge-sensitive datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助韭黄采纳,获得10
刚刚
啦某某发布了新的文献求助20
1秒前
cc发布了新的文献求助30
1秒前
3秒前
一颗苹果完成签到,获得积分10
3秒前
故意的傲玉应助小月采纳,获得10
4秒前
nicemice发布了新的文献求助10
4秒前
xtlx完成签到,获得积分10
4秒前
蓝桉完成签到,获得积分10
5秒前
执着的怜寒应助aaaabc采纳,获得20
5秒前
5秒前
花花发布了新的文献求助10
5秒前
万能图书馆应助白华苍松采纳,获得10
6秒前
孔大漂亮完成签到,获得积分10
7秒前
8秒前
打打应助HopeStar采纳,获得10
8秒前
8秒前
科研通AI5应助标致小伙采纳,获得30
8秒前
有风发布了新的文献求助10
8秒前
8秒前
路在脚下完成签到 ,获得积分10
8秒前
bkagyin应助GOODYUE采纳,获得10
9秒前
Jasper应助彩色的蓝天采纳,获得10
9秒前
詹严青发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
郭翔完成签到,获得积分10
10秒前
Yeong发布了新的文献求助10
11秒前
jh完成签到 ,获得积分10
11秒前
syq完成签到,获得积分10
12秒前
sfw完成签到,获得积分10
12秒前
13秒前
光亮面包完成签到 ,获得积分10
13秒前
小猪啵比完成签到 ,获得积分10
13秒前
小智发布了新的文献求助10
13秒前
毛慢慢发布了新的文献求助10
13秒前
lilac应助1234567890采纳,获得10
14秒前
OYE发布了新的文献求助10
14秒前
木木发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759