EGAT: Edge-Featured Graph Attention Network

计算机科学 图形 杠杆(统计) 边缘设备 特征学习 GSM演进的增强数据速率 边缘计算 理论计算机科学 人工智能 云计算 操作系统
作者
Ziming Wang,Jun Chen,Haopeng Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-264 被引量:60
标识
DOI:10.1007/978-3-030-86362-3_21
摘要

Most state-of-the-art Graph Neural Networks focus on node features in the learning process but ignore edge features. However, edge features also contain essential information in real-world, such as financial graphs. Node-centric approaches are suboptimal in edge-sensitive graphs since edge features are not adequately utilized. To address this problem, we present the Edge-Featured Graph Attention Network (EGAT) to leverage edge features in the graph feature representation. Our model is based on the edge-integrated attention mechanism, where both node and edge features are included in the calculation of the message and attention weights. In addition, the importance of edge information suggests that the edge features should be updated to learn high-level representation. So we perform edge updating with the integration of the features of connected nodes. In contrast to edge-node switching, our model acquires the adjacent edge features with the node-transit strategy, avoiding significant lift of computational complexity. Then we employ a multi-scale merge strategy, which concatenates features of every layer to construct hierarchical representation. Moreover, our model can be adapted to domain-specific graph neural networks, which further extends the application scenarios. Experiments show that our model achieves or matches the state-of-the-art on both node-sensitive and edge-sensitive datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CA发布了新的文献求助10
刚刚
哆来咪发布了新的文献求助20
刚刚
无花果应助syy080837采纳,获得10
1秒前
1秒前
草中有粑粑完成签到,获得积分10
1秒前
白子双发布了新的文献求助10
1秒前
4秒前
5秒前
6秒前
coffee发布了新的文献求助10
6秒前
8秒前
诸葛语琴完成签到,获得积分10
9秒前
12121发布了新的文献求助10
11秒前
Kenny发布了新的文献求助10
12秒前
syy080837发布了新的文献求助10
14秒前
星辰大海应助埃森采纳,获得10
18秒前
Kenny完成签到,获得积分10
20秒前
学术混子雷雷雷雷雷完成签到,获得积分10
23秒前
huang完成签到,获得积分10
24秒前
28秒前
往事不可挽回完成签到 ,获得积分10
30秒前
王英俊完成签到,获得积分10
32秒前
小马甲应助GongSyi采纳,获得10
34秒前
梧桐发布了新的文献求助10
34秒前
土豆丝关注了科研通微信公众号
36秒前
syy080837完成签到,获得积分10
38秒前
wxyshare举报小巧初露求助涉嫌违规
39秒前
天天快乐应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
孙_boss完成签到 ,获得积分10
39秒前
Mic应助科研通管家采纳,获得10
39秒前
39秒前
浮游应助科研通管家采纳,获得10
40秒前
李健应助科研通管家采纳,获得10
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
Mic应助科研通管家采纳,获得10
40秒前
研友_VZG7GZ应助科研通管家采纳,获得10
40秒前
Verity应助科研通管家采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560249
求助须知:如何正确求助?哪些是违规求助? 4645431
关于积分的说明 14675179
捐赠科研通 4586582
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490105
关于科研通互助平台的介绍 1460915