EGAT: Edge-Featured Graph Attention Network

计算机科学 图形 杠杆(统计) 边缘设备 特征学习 GSM演进的增强数据速率 边缘计算 理论计算机科学 人工智能 云计算 操作系统
作者
Ziming Wang,Jun Chen,Haopeng Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-264 被引量:60
标识
DOI:10.1007/978-3-030-86362-3_21
摘要

Most state-of-the-art Graph Neural Networks focus on node features in the learning process but ignore edge features. However, edge features also contain essential information in real-world, such as financial graphs. Node-centric approaches are suboptimal in edge-sensitive graphs since edge features are not adequately utilized. To address this problem, we present the Edge-Featured Graph Attention Network (EGAT) to leverage edge features in the graph feature representation. Our model is based on the edge-integrated attention mechanism, where both node and edge features are included in the calculation of the message and attention weights. In addition, the importance of edge information suggests that the edge features should be updated to learn high-level representation. So we perform edge updating with the integration of the features of connected nodes. In contrast to edge-node switching, our model acquires the adjacent edge features with the node-transit strategy, avoiding significant lift of computational complexity. Then we employ a multi-scale merge strategy, which concatenates features of every layer to construct hierarchical representation. Moreover, our model can be adapted to domain-specific graph neural networks, which further extends the application scenarios. Experiments show that our model achieves or matches the state-of-the-art on both node-sensitive and edge-sensitive datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
清浅发布了新的文献求助30
1秒前
太想进部了完成签到,获得积分10
1秒前
1秒前
JamesPei应助干净的友卉采纳,获得10
1秒前
打打应助今天没有哭鸭采纳,获得10
1秒前
JamesPei应助易烊千玺老婆采纳,获得10
1秒前
1秒前
2秒前
852应助SYX采纳,获得30
2秒前
斯文败类应助小小小小采纳,获得10
2秒前
科研通AI6应助HAHA采纳,获得10
2秒前
坚定晓兰应助HAHA采纳,获得10
2秒前
科研通AI6应助HAHA采纳,获得10
2秒前
热心的易烟完成签到,获得积分10
2秒前
3秒前
Hello应助小学生采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
song发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
alvis关注了科研通微信公众号
5秒前
LingMg发布了新的文献求助30
6秒前
不安溪灵完成签到,获得积分10
6秒前
6秒前
6秒前
熊猫海发布了新的文献求助10
6秒前
7秒前
伞下铭发布了新的文献求助10
7秒前
7秒前
8秒前
Herzing发布了新的文献求助10
8秒前
8秒前
喜悦发卡完成签到,获得积分10
9秒前
小青椒应助斯文明杰采纳,获得30
9秒前
斯文凝蕊发布了新的文献求助10
9秒前
大个应助www采纳,获得10
9秒前
Y1B完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002