EGAT: Edge-Featured Graph Attention Network

计算机科学 图形 杠杆(统计) 边缘设备 特征学习 GSM演进的增强数据速率 边缘计算 理论计算机科学 人工智能 云计算 操作系统
作者
Ziming Wang,Jun Chen,Haopeng Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-264 被引量:60
标识
DOI:10.1007/978-3-030-86362-3_21
摘要

Most state-of-the-art Graph Neural Networks focus on node features in the learning process but ignore edge features. However, edge features also contain essential information in real-world, such as financial graphs. Node-centric approaches are suboptimal in edge-sensitive graphs since edge features are not adequately utilized. To address this problem, we present the Edge-Featured Graph Attention Network (EGAT) to leverage edge features in the graph feature representation. Our model is based on the edge-integrated attention mechanism, where both node and edge features are included in the calculation of the message and attention weights. In addition, the importance of edge information suggests that the edge features should be updated to learn high-level representation. So we perform edge updating with the integration of the features of connected nodes. In contrast to edge-node switching, our model acquires the adjacent edge features with the node-transit strategy, avoiding significant lift of computational complexity. Then we employ a multi-scale merge strategy, which concatenates features of every layer to construct hierarchical representation. Moreover, our model can be adapted to domain-specific graph neural networks, which further extends the application scenarios. Experiments show that our model achieves or matches the state-of-the-art on both node-sensitive and edge-sensitive datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SCL发布了新的文献求助10
刚刚
嘿嘿发布了新的文献求助10
1秒前
年糕发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
刘的花完成签到,获得积分10
2秒前
HJJHJH发布了新的文献求助10
2秒前
所所应助ycy采纳,获得10
4秒前
所所应助辉辉采纳,获得10
4秒前
桐桐应助一烟尘采纳,获得10
4秒前
5秒前
好好学习完成签到,获得积分20
5秒前
小新发布了新的文献求助10
5秒前
机智以筠发布了新的文献求助10
5秒前
Wendy完成签到,获得积分10
5秒前
5秒前
丘比特应助Liiipan采纳,获得10
5秒前
YHX9910发布了新的文献求助10
6秒前
Lucas应助清爽含灵采纳,获得10
6秒前
遥不可及发布了新的文献求助10
7秒前
思源应助xin采纳,获得10
7秒前
圆圆完成签到 ,获得积分10
8秒前
8秒前
英姑应助努力采纳,获得10
8秒前
tangbaotian完成签到,获得积分10
8秒前
8秒前
duan完成签到 ,获得积分10
8秒前
8秒前
vic完成签到,获得积分10
8秒前
踏实嚣发布了新的文献求助10
8秒前
zhangliangfu完成签到,获得积分10
9秒前
9秒前
畅快的刚完成签到,获得积分10
9秒前
W昂发布了新的文献求助10
10秒前
JYL发布了新的文献求助10
10秒前
聪慧的完成签到,获得积分10
11秒前
11秒前
可爱的函函应助黄JY采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521079
求助须知:如何正确求助?哪些是违规求助? 4612571
关于积分的说明 14534355
捐赠科研通 4550094
什么是DOI,文献DOI怎么找? 2493467
邀请新用户注册赠送积分活动 1474588
关于科研通互助平台的介绍 1446154