EGAT: Edge-Featured Graph Attention Network

计算机科学 图形 杠杆(统计) 边缘设备 特征学习 GSM演进的增强数据速率 边缘计算 理论计算机科学 人工智能 云计算 操作系统
作者
Ziming Wang,Jun Chen,Haopeng Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-264 被引量:60
标识
DOI:10.1007/978-3-030-86362-3_21
摘要

Most state-of-the-art Graph Neural Networks focus on node features in the learning process but ignore edge features. However, edge features also contain essential information in real-world, such as financial graphs. Node-centric approaches are suboptimal in edge-sensitive graphs since edge features are not adequately utilized. To address this problem, we present the Edge-Featured Graph Attention Network (EGAT) to leverage edge features in the graph feature representation. Our model is based on the edge-integrated attention mechanism, where both node and edge features are included in the calculation of the message and attention weights. In addition, the importance of edge information suggests that the edge features should be updated to learn high-level representation. So we perform edge updating with the integration of the features of connected nodes. In contrast to edge-node switching, our model acquires the adjacent edge features with the node-transit strategy, avoiding significant lift of computational complexity. Then we employ a multi-scale merge strategy, which concatenates features of every layer to construct hierarchical representation. Moreover, our model can be adapted to domain-specific graph neural networks, which further extends the application scenarios. Experiments show that our model achieves or matches the state-of-the-art on both node-sensitive and edge-sensitive datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹏鱼燕完成签到,获得积分10
1秒前
wxf发布了新的文献求助10
1秒前
1秒前
朴实初夏完成签到 ,获得积分10
1秒前
栖风完成签到,获得积分10
1秒前
2秒前
ZOEY完成签到,获得积分10
2秒前
coco完成签到,获得积分10
2秒前
好好完成签到,获得积分20
2秒前
默默新波发布了新的文献求助10
2秒前
科研通AI2S应助cai采纳,获得10
2秒前
lcj完成签到,获得积分10
2秒前
时567完成签到,获得积分10
2秒前
3秒前
3秒前
木木完成签到,获得积分10
3秒前
roselau完成签到,获得积分10
3秒前
3秒前
不舍天真发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
阿巴完成签到 ,获得积分10
4秒前
碧琴发布了新的文献求助10
4秒前
大聪明完成签到,获得积分10
4秒前
科目三应助伊尔采纳,获得10
4秒前
酷酷元风完成签到,获得积分10
4秒前
5秒前
6秒前
玻璃外的世界完成签到,获得积分10
6秒前
边缘选手发布了新的文献求助10
6秒前
时雨完成签到,获得积分10
6秒前
JamesPei应助杨羕采纳,获得10
6秒前
6秒前
爱听歌的大地完成签到 ,获得积分10
7秒前
7秒前
naki完成签到,获得积分10
7秒前
hismeng发布了新的文献求助20
7秒前
清新王老吉完成签到,获得积分10
7秒前
橙陈陈完成签到,获得积分10
7秒前
8秒前
孤单不如流浪完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977