EGAT: Edge-Featured Graph Attention Network

计算机科学 图形 杠杆(统计) 边缘设备 特征学习 GSM演进的增强数据速率 边缘计算 理论计算机科学 人工智能 云计算 操作系统
作者
Ziming Wang,Jun Chen,Haopeng Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-264 被引量:60
标识
DOI:10.1007/978-3-030-86362-3_21
摘要

Most state-of-the-art Graph Neural Networks focus on node features in the learning process but ignore edge features. However, edge features also contain essential information in real-world, such as financial graphs. Node-centric approaches are suboptimal in edge-sensitive graphs since edge features are not adequately utilized. To address this problem, we present the Edge-Featured Graph Attention Network (EGAT) to leverage edge features in the graph feature representation. Our model is based on the edge-integrated attention mechanism, where both node and edge features are included in the calculation of the message and attention weights. In addition, the importance of edge information suggests that the edge features should be updated to learn high-level representation. So we perform edge updating with the integration of the features of connected nodes. In contrast to edge-node switching, our model acquires the adjacent edge features with the node-transit strategy, avoiding significant lift of computational complexity. Then we employ a multi-scale merge strategy, which concatenates features of every layer to construct hierarchical representation. Moreover, our model can be adapted to domain-specific graph neural networks, which further extends the application scenarios. Experiments show that our model achieves or matches the state-of-the-art on both node-sensitive and edge-sensitive datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mandy发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
Jasper应助ee采纳,获得10
2秒前
3秒前
史shi完成签到,获得积分10
3秒前
燕麦大王发布了新的文献求助10
4秒前
kiki发布了新的文献求助10
4秒前
食杂砸发布了新的文献求助10
5秒前
皮皮大王完成签到 ,获得积分10
6秒前
光亮鹤发布了新的文献求助10
6秒前
万能图书馆应助迫切采纳,获得10
7秒前
衣锦夜行完成签到,获得积分10
7秒前
7秒前
进击的PhD应助小花采纳,获得30
7秒前
麻瓜完成签到,获得积分10
8秒前
8秒前
ksrcc发布了新的文献求助30
8秒前
mumumiao完成签到,获得积分10
9秒前
橙汁完成签到 ,获得积分10
9秒前
9秒前
007发布了新的文献求助10
9秒前
9秒前
10秒前
浮游应助xxxhhh采纳,获得10
10秒前
浮游应助xxxhhh采纳,获得10
11秒前
浮游应助xxxhhh采纳,获得10
11秒前
sevenhill应助xxxhhh采纳,获得10
11秒前
浮游应助xxxhhh采纳,获得10
11秒前
健壮的凉面完成签到,获得积分10
11秒前
浮游应助xxxhhh采纳,获得10
11秒前
香蕉诗蕊应助xxxhhh采纳,获得10
11秒前
11秒前
浮游应助xxxhhh采纳,获得10
11秒前
12秒前
12秒前
ee发布了新的文献求助10
12秒前
微笑傥发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642322
求助须知:如何正确求助?哪些是违规求助? 4758662
关于积分的说明 15017257
捐赠科研通 4800969
什么是DOI,文献DOI怎么找? 2566262
邀请新用户注册赠送积分活动 1524397
关于科研通互助平台的介绍 1483913