EGAT: Edge-Featured Graph Attention Network

计算机科学 图形 杠杆(统计) 边缘设备 特征学习 GSM演进的增强数据速率 边缘计算 理论计算机科学 人工智能 云计算 操作系统
作者
Ziming Wang,Jun Chen,Haopeng Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-264 被引量:34
标识
DOI:10.1007/978-3-030-86362-3_21
摘要

Most state-of-the-art Graph Neural Networks focus on node features in the learning process but ignore edge features. However, edge features also contain essential information in real-world, such as financial graphs. Node-centric approaches are suboptimal in edge-sensitive graphs since edge features are not adequately utilized. To address this problem, we present the Edge-Featured Graph Attention Network (EGAT) to leverage edge features in the graph feature representation. Our model is based on the edge-integrated attention mechanism, where both node and edge features are included in the calculation of the message and attention weights. In addition, the importance of edge information suggests that the edge features should be updated to learn high-level representation. So we perform edge updating with the integration of the features of connected nodes. In contrast to edge-node switching, our model acquires the adjacent edge features with the node-transit strategy, avoiding significant lift of computational complexity. Then we employ a multi-scale merge strategy, which concatenates features of every layer to construct hierarchical representation. Moreover, our model can be adapted to domain-specific graph neural networks, which further extends the application scenarios. Experiments show that our model achieves or matches the state-of-the-art on both node-sensitive and edge-sensitive datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈南风发布了新的文献求助10
刚刚
cowboy007完成签到,获得积分10
1秒前
KUIWU发布了新的文献求助10
1秒前
Ann完成签到,获得积分10
1秒前
1秒前
一半可发布了新的文献求助10
2秒前
乘风发布了新的文献求助10
2秒前
3秒前
3秒前
星辰大海应助卤鸡腿采纳,获得10
4秒前
winki完成签到,获得积分10
4秒前
YYGQ完成签到,获得积分10
4秒前
安详的大象完成签到,获得积分10
5秒前
大模型应助柔弱紊采纳,获得10
5秒前
栗子521完成签到,获得积分10
6秒前
S-Lab Sonic发布了新的文献求助20
7秒前
7秒前
一半可完成签到,获得积分10
7秒前
无我完成签到,获得积分20
7秒前
擦书发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
xyy完成签到,获得积分20
10秒前
Qiqi发布了新的文献求助10
10秒前
寻123完成签到,获得积分10
11秒前
anhao发布了新的文献求助10
11秒前
谦让小玉完成签到 ,获得积分10
11秒前
Serendipity应助小方采纳,获得10
12秒前
老解发布了新的文献求助10
12秒前
Ammon发布了新的文献求助10
12秒前
小马甲应助波菌采纳,获得50
13秒前
法外潮湿宝贝完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
17秒前
reporror完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558489
求助须知:如何正确求助?哪些是违规求助? 3985507
关于积分的说明 12338928
捐赠科研通 3655887
什么是DOI,文献DOI怎么找? 2014038
邀请新用户注册赠送积分活动 1048872
科研通“疑难数据库(出版商)”最低求助积分说明 937242