亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EGAT: Edge-Featured Graph Attention Network

计算机科学 图形 杠杆(统计) 边缘设备 特征学习 GSM演进的增强数据速率 边缘计算 理论计算机科学 人工智能 云计算 操作系统
作者
Ziming Wang,Jun Chen,Haopeng Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-264 被引量:60
标识
DOI:10.1007/978-3-030-86362-3_21
摘要

Most state-of-the-art Graph Neural Networks focus on node features in the learning process but ignore edge features. However, edge features also contain essential information in real-world, such as financial graphs. Node-centric approaches are suboptimal in edge-sensitive graphs since edge features are not adequately utilized. To address this problem, we present the Edge-Featured Graph Attention Network (EGAT) to leverage edge features in the graph feature representation. Our model is based on the edge-integrated attention mechanism, where both node and edge features are included in the calculation of the message and attention weights. In addition, the importance of edge information suggests that the edge features should be updated to learn high-level representation. So we perform edge updating with the integration of the features of connected nodes. In contrast to edge-node switching, our model acquires the adjacent edge features with the node-transit strategy, avoiding significant lift of computational complexity. Then we employ a multi-scale merge strategy, which concatenates features of every layer to construct hierarchical representation. Moreover, our model can be adapted to domain-specific graph neural networks, which further extends the application scenarios. Experiments show that our model achieves or matches the state-of-the-art on both node-sensitive and edge-sensitive datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到 ,获得积分10
3秒前
4秒前
隐形便当完成签到 ,获得积分10
7秒前
10秒前
12秒前
bigalexwei发布了新的文献求助30
15秒前
aidiresi发布了新的文献求助10
16秒前
23秒前
36秒前
36秒前
李爱国应助fangdonghai采纳,获得10
40秒前
ceeray23发布了新的文献求助20
41秒前
43秒前
小新小新完成签到 ,获得积分10
46秒前
48秒前
荔荔完成签到,获得积分20
49秒前
慕青应助沧浪采纳,获得10
54秒前
荔荔发布了新的文献求助50
54秒前
蓝天应助aidiresi采纳,获得10
55秒前
心灵美的梦松完成签到,获得积分10
57秒前
59秒前
Sun完成签到,获得积分10
1分钟前
林哈哈发布了新的文献求助10
1分钟前
慕青应助心灵美的梦松采纳,获得10
1分钟前
aidiresi完成签到,获得积分10
1分钟前
1分钟前
修水县1个科研人完成签到 ,获得积分10
1分钟前
Criminology34举报why求助涉嫌违规
1分钟前
你嵙这个期刊没买完成签到,获得积分10
1分钟前
zmjmj发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Criminology34举报yuanjie求助涉嫌违规
1分钟前
清秀的宝马完成签到 ,获得积分10
1分钟前
比青云完成签到,获得积分10
1分钟前
若宫伊芙完成签到,获得积分10
1分钟前
英姑应助zmjmj采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664034
求助须知:如何正确求助?哪些是违规求助? 4856893
关于积分的说明 15107044
捐赠科研通 4822496
什么是DOI,文献DOI怎么找? 2581475
邀请新用户注册赠送积分活动 1535694
关于科研通互助平台的介绍 1493921