EGAT: Edge-Featured Graph Attention Network

计算机科学 图形 杠杆(统计) 边缘设备 特征学习 GSM演进的增强数据速率 边缘计算 理论计算机科学 人工智能 云计算 操作系统
作者
Ziming Wang,Jun Chen,Haopeng Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-264 被引量:34
标识
DOI:10.1007/978-3-030-86362-3_21
摘要

Most state-of-the-art Graph Neural Networks focus on node features in the learning process but ignore edge features. However, edge features also contain essential information in real-world, such as financial graphs. Node-centric approaches are suboptimal in edge-sensitive graphs since edge features are not adequately utilized. To address this problem, we present the Edge-Featured Graph Attention Network (EGAT) to leverage edge features in the graph feature representation. Our model is based on the edge-integrated attention mechanism, where both node and edge features are included in the calculation of the message and attention weights. In addition, the importance of edge information suggests that the edge features should be updated to learn high-level representation. So we perform edge updating with the integration of the features of connected nodes. In contrast to edge-node switching, our model acquires the adjacent edge features with the node-transit strategy, avoiding significant lift of computational complexity. Then we employ a multi-scale merge strategy, which concatenates features of every layer to construct hierarchical representation. Moreover, our model can be adapted to domain-specific graph neural networks, which further extends the application scenarios. Experiments show that our model achieves or matches the state-of-the-art on both node-sensitive and edge-sensitive datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
dddd完成签到,获得积分20
2秒前
冉冉发布了新的文献求助10
2秒前
ggg发布了新的文献求助10
3秒前
Oreki发布了新的文献求助10
4秒前
6秒前
谢大喵发布了新的文献求助30
7秒前
奋斗小蜜蜂完成签到,获得积分10
7秒前
chenzihao发布了新的文献求助10
7秒前
8秒前
8秒前
秀丽雁风完成签到,获得积分20
8秒前
chuanxue完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
爱喝水发布了新的文献求助10
11秒前
完美世界应助522采纳,获得50
13秒前
sibia完成签到,获得积分10
13秒前
大个应助简7采纳,获得30
14秒前
柴胡发布了新的文献求助10
14秒前
14秒前
上官若男应助hd采纳,获得10
15秒前
chuanxue发布了新的文献求助30
15秒前
whandzxl发布了新的文献求助10
15秒前
16秒前
16秒前
量子星尘发布了新的文献求助30
16秒前
慕青应助爱喝水采纳,获得10
17秒前
18秒前
wxx完成签到,获得积分10
19秒前
20秒前
Wang完成签到,获得积分10
20秒前
chenzihao完成签到,获得积分20
21秒前
司藤完成签到 ,获得积分10
23秒前
23秒前
物语完成签到,获得积分20
23秒前
哟哟哟发布了新的文献求助10
24秒前
浮游应助Retromer采纳,获得10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144545
求助须知:如何正确求助?哪些是违规求助? 4342237
关于积分的说明 13522560
捐赠科研通 4182757
什么是DOI,文献DOI怎么找? 2293639
邀请新用户注册赠送积分活动 1294207
关于科研通互助平台的介绍 1236955