重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

EGAT: Edge-Featured Graph Attention Network

计算机科学 图形 杠杆(统计) 边缘设备 特征学习 GSM演进的增强数据速率 边缘计算 理论计算机科学 人工智能 云计算 操作系统
作者
Ziming Wang,Jun Chen,Haopeng Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 253-264 被引量:60
标识
DOI:10.1007/978-3-030-86362-3_21
摘要

Most state-of-the-art Graph Neural Networks focus on node features in the learning process but ignore edge features. However, edge features also contain essential information in real-world, such as financial graphs. Node-centric approaches are suboptimal in edge-sensitive graphs since edge features are not adequately utilized. To address this problem, we present the Edge-Featured Graph Attention Network (EGAT) to leverage edge features in the graph feature representation. Our model is based on the edge-integrated attention mechanism, where both node and edge features are included in the calculation of the message and attention weights. In addition, the importance of edge information suggests that the edge features should be updated to learn high-level representation. So we perform edge updating with the integration of the features of connected nodes. In contrast to edge-node switching, our model acquires the adjacent edge features with the node-transit strategy, avoiding significant lift of computational complexity. Then we employ a multi-scale merge strategy, which concatenates features of every layer to construct hierarchical representation. Moreover, our model can be adapted to domain-specific graph neural networks, which further extends the application scenarios. Experiments show that our model achieves or matches the state-of-the-art on both node-sensitive and edge-sensitive datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
胡图图完成签到 ,获得积分10
刚刚
cr7完成签到,获得积分10
2秒前
2秒前
丘比特应助轩轩采纳,获得10
2秒前
花强龙发布了新的文献求助10
2秒前
哈哈镜发布了新的文献求助10
2秒前
breeze完成签到,获得积分10
2秒前
3秒前
香蕉从寒发布了新的文献求助10
3秒前
4秒前
明君发布了新的文献求助30
4秒前
我的小羊发布了新的文献求助10
4秒前
5秒前
哈哈镜完成签到,获得积分10
6秒前
撖堡包完成签到 ,获得积分10
6秒前
所所应助Penn采纳,获得10
7秒前
8秒前
8秒前
8秒前
好大的雨完成签到,获得积分10
9秒前
端庄纸飞机完成签到,获得积分10
9秒前
yun发布了新的文献求助30
10秒前
devoel完成签到,获得积分10
10秒前
CodeCraft应助乐观金毛采纳,获得10
10秒前
耶斯完成签到,获得积分20
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
meng发布了新的文献求助10
11秒前
12秒前
Lucas应助123l采纳,获得10
12秒前
精明玲发布了新的文献求助10
12秒前
浮游应助hzauhzau采纳,获得10
13秒前
Pansy527完成签到,获得积分20
13秒前
13秒前
13秒前
胡剑辉发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465885
求助须知:如何正确求助?哪些是违规求助? 4570113
关于积分的说明 14322653
捐赠科研通 4496569
什么是DOI,文献DOI怎么找? 2463432
邀请新用户注册赠送积分活动 1452314
关于科研通互助平台的介绍 1427516