Highly parallelized memristive binary neural network

记忆电阻器 计算机科学 横杆开关 人工神经网络 深度学习 记忆晶体管 浮点型 电压 算法 人工智能 计算机硬件 电子工程 电阻随机存取存储器 电气工程 工程类 电信
作者
Jiadong Chen,Shiping Wen,Kaibo Shi,Yin Yang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:144: 565-572 被引量:16
标识
DOI:10.1016/j.neunet.2021.09.016
摘要

At present, in the new hardware design work of deep learning, memristor as a non-volatile memory with computing power has become a research hotspot. The weights in the deep neural network are the floating-point number. Writing a floating-point value into a memristor will result in a loss of accuracy, and the writing process will take more time. The binarized neural network (BNN) binarizes the weights and activation values that were originally floating-point numbers to +1 and -1. This will greatly reduce the storage space consumption and time consumption of programming the resistance value of the memristor. Furthermore, this will help to simplify the programming of memristors in deep neural network circuits and speed up the inference process. This paper provides a complete solution for implementing memristive BNN. Furthermore, we improved the design of the memristor crossbar by converting the input feature map and kernel before performing the convolution operation that can ensure the sign of the input voltage of each port constant. Therefore, we do not need to determine the sign of the input voltage required by the port in advance which simplifies the process of inputting the feature map elements to each port of the crossbar in the form of voltage. At the same time, in order to ensure that the output of the current convolution layer can be directly used as the input of the next layer, we have added a corresponding processing circuit, which integrates batch-normalization and binarization operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinble发布了新的文献求助30
刚刚
典雅葶发布了新的文献求助10
刚刚
TT完成签到,获得积分10
1秒前
曹梦梦完成签到,获得积分10
1秒前
1秒前
光能使者发布了新的文献求助10
2秒前
夏沫完成签到,获得积分10
2秒前
飞太难完成签到,获得积分10
2秒前
2秒前
喜悦的怀梦完成签到,获得积分20
2秒前
思源应助Joker_Guo采纳,获得10
2秒前
图图烤肉完成签到,获得积分10
3秒前
kjbt发布了新的文献求助10
3秒前
施凝发布了新的文献求助10
3秒前
4秒前
李昕123发布了新的文献求助10
4秒前
思源应助张杰采纳,获得30
4秒前
4秒前
4秒前
烟花应助认真雅阳采纳,获得10
4秒前
tuanhust应助健忘的幻梅采纳,获得20
5秒前
量子星尘发布了新的文献求助10
5秒前
怕孤单的绝义完成签到,获得积分10
5秒前
李健的小迷弟应助萘GAN采纳,获得10
6秒前
FashionBoy应助Ztx采纳,获得10
6秒前
郑盼秋完成签到,获得积分10
6秒前
李李发布了新的文献求助10
6秒前
6秒前
7秒前
訫乐完成签到,获得积分10
7秒前
8秒前
zzz完成签到 ,获得积分10
8秒前
wuwenyu发布了新的文献求助10
9秒前
keyanxiaobai完成签到 ,获得积分10
9秒前
害羞听荷发布了新的文献求助30
9秒前
9秒前
斯文败类应助可爱的以松采纳,获得10
10秒前
orixero应助xx采纳,获得10
11秒前
11秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971125
求助须知:如何正确求助?哪些是违规求助? 3515824
关于积分的说明 11179811
捐赠科研通 3250971
什么是DOI,文献DOI怎么找? 1795610
邀请新用户注册赠送积分活动 875897
科研通“疑难数据库(出版商)”最低求助积分说明 805207