Noncontrast Magnetic Resonance Radiomics and Multilayer Perceptron Network Classifier: An approach for Predicting Fibroblast Activation Protein Expression in Patients With Pancreatic Ductal Adenocarcinoma.

模式识别(心理学) 内科学 分类器(UML) 胰腺导管腺癌 无线电技术 计算机科学 一致性 胰腺癌 病理 人工智能 核医学 生物标志物
作者
Yinghao Meng,Hao Zhang,Qi Li,Pengyi Xing,Fang Liu,Kai Cao,Xu Fang,Jing Li,Jieyu Yu,Xiaochen Feng,Chao Ma,Li Wang,Hui Jiang,Jianping Lu,Yun Bian,Chengwei Shao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:54 (5): 1432-1443 被引量:3
标识
DOI:10.1002/jmri.27648
摘要

BACKGROUND Fibroblast activation protein (FAP) in pancreatic ductal adenocarcinoma (PDAC) is closely related to the prognosis and treatment of patients. Accurate preoperative FAP expression can better identify the population benefitting from FAP-targeting drugs. PURPOSE To develop and validate a machine learning classifier based on noncontrast MRI for the preoperative prediction of FAP expression in patients with PDAC. STUDY TYPE Retrospective cohort study. POPULATION Altogether, 129 patients with pathology-confirmed PDAC undergoing MR scan and surgical resection; 90 patients in a training cohort, and 39 patients in a validation cohort. FIELD STRENGTH/SEQUENCE/3T: Breath-hold single-shot fast-spin echo T2-weighted sequence and unenhanced and noncontrast T1-weighted fat-suppressed sequences. ASSESSMENT FAP expression was quantified using immunohistochemistry. For each patient, 1409 radiomics features were extracted from T1- and T2-weighted images and reduced using the least absolute shrinkage and selection operator logistic regression algorithm. A multilayer perceptron (MLP) network classifier was developed using the training and validation set. The MLP network classifier performance was determined by its discriminative ability, calibration, and clinical utility. STATISTICAL TESTS Kaplan-Meier estimates, student's t-test, the Kruskal-Wallis H test, and the chi-square test, univariable regression analysis, receiver operating characteristic curve, and decision curve analysis were used. RESULTS A log-rank test showed that the survival of patients with low FAP expression (24.43 months) was significantly longer (P < 0.05) than that in the FAP-high group (13.50 months). The prediction model showed good discrimination in the training set (area under the curve [AUC], 0.84) and the validation set (AUC, 0.77). The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 75.00%, 79.41%, 0.77, 0.86, and 0.66, respectively, whereas those for the validation set were 85.00%, 63.16%, 0.74, 0.71, and 0.80, respectively. DATA CONCLUSIONS The MLP network classifier based on noncontrast MRI can accurately predict FAP expression in patients with PDAC. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
费城青年完成签到,获得积分10
刚刚
领导范儿应助KYpaopao采纳,获得10
刚刚
1秒前
王爱芳完成签到,获得积分10
1秒前
2秒前
2秒前
姚雨轩发布了新的文献求助10
3秒前
情怀应助悲惨雪糕W采纳,获得10
3秒前
小蘑菇应助果子采纳,获得10
3秒前
3秒前
4秒前
5秒前
五更夜完成签到,获得积分20
5秒前
穆奕发布了新的文献求助30
6秒前
6秒前
6秒前
7秒前
7秒前
大模型应助科研豆包采纳,获得10
8秒前
陈晗予发布了新的文献求助10
9秒前
9秒前
完美世界应助若俗人采纳,获得10
10秒前
缓慢千易发布了新的文献求助10
11秒前
脆脆鲨发布了新的文献求助10
11秒前
充电宝应助ken采纳,获得10
11秒前
jzhou88发布了新的文献求助10
12秒前
KYpaopao发布了新的文献求助10
12秒前
12秒前
热心的安阳完成签到 ,获得积分10
13秒前
细腻驳完成签到,获得积分10
13秒前
15秒前
15秒前
布灵布灵发布了新的文献求助10
16秒前
16秒前
热心的安阳关注了科研通微信公众号
17秒前
cocolu应助肥皂采纳,获得30
18秒前
18秒前
20秒前
20秒前
缓慢千易完成签到,获得积分10
20秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3382813
求助须知:如何正确求助?哪些是违规求助? 2997266
关于积分的说明 8773363
捐赠科研通 2682672
什么是DOI,文献DOI怎么找? 1469272
科研通“疑难数据库(出版商)”最低求助积分说明 679344
邀请新用户注册赠送积分活动 671487