Visual interpretability in 3D brain tumor segmentation network

可解释性 计算机科学 分割 人工智能 机器学习 模式识别(心理学) 计算机视觉 神经科学 心理学
作者
Hira Saleem,Basit Raza
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:133: 104410-104410 被引量:37
标识
DOI:10.1016/j.compbiomed.2021.104410
摘要

Abstract Medical image segmentation is a complex yet one of the most essential tasks for diagnostic procedures such as brain tumor detection. Several 3D Convolutional Neural Network (CNN) architectures have achieved remarkable results in brain tumor segmentation. However, due to the black-box nature of CNNs, the integration of such models to make decisions about diagnosis and treatment is high-risk in the domain of healthcare. It is difficult to explain the rationale behind the model's predictions due to the lack of interpretability. Hence, the successful deployment of deep learning models in the medical domain requires accurate as well as transparent predictions. In this paper, we generate 3D visual explanations to analyze the 3D brain tumor segmentation model by extending a post-hoc interpretability technique. We explore the advantages of a gradient-free interpretability approach over gradient-based approaches. Moreover, we interpret the behavior of the segmentation model with respect to the input Magnetic Resonance Imaging (MRI) images and investigate the prediction strategy of the model. We also evaluate the interpretability methodology quantitatively for medical image segmentation tasks. To deduce that our visual explanations do not represent false information, we validate the extended methodology quantitatively. We learn that the information captured by the model is coherent with the domain knowledge of human experts, making it more trustworthy. We use the BraTS-2018 dataset to train the 3D brain tumor segmentation network and perform interpretability experiments to generate visual explanations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tink完成签到,获得积分10
3秒前
3秒前
纪鹏飞完成签到,获得积分10
3秒前
4秒前
温淼完成签到,获得积分20
4秒前
5秒前
白色花海完成签到,获得积分10
5秒前
空青发布了新的文献求助10
6秒前
迷茫的一代完成签到,获得积分10
6秒前
顾矜应助不可思议采纳,获得10
6秒前
顾矜应助超级的雪糕采纳,获得10
7秒前
wanci应助阿星捌采纳,获得10
7秒前
聪慧曲奇完成签到 ,获得积分10
7秒前
so000应助普通用户30号采纳,获得10
7秒前
科研通AI2S应助Maxin采纳,获得30
8秒前
8秒前
9秒前
yry发布了新的文献求助10
9秒前
今后应助五花肉就酒走采纳,获得10
9秒前
9秒前
10秒前
碧蓝的日记本完成签到,获得积分20
10秒前
丰知然应助负责的方盒采纳,获得10
11秒前
Frose完成签到,获得积分10
11秒前
11秒前
小王同学搞学术完成签到,获得积分10
12秒前
英姑应助梅里尔阿斯特兰采纳,获得10
12秒前
13秒前
13秒前
13秒前
13秒前
WWXWWX发布了新的文献求助10
14秒前
14秒前
无私雁菱完成签到,获得积分10
14秒前
15秒前
15秒前
orixero应助William_l_c采纳,获得10
15秒前
佳凝发布了新的文献求助10
15秒前
阳仔发布了新的文献求助10
16秒前
wendy.lv完成签到,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454494
求助须知:如何正确求助?哪些是违规求助? 3049704
关于积分的说明 9018492
捐赠科研通 2738369
什么是DOI,文献DOI怎么找? 1502105
科研通“疑难数据库(出版商)”最低求助积分说明 694350
邀请新用户注册赠送积分活动 692976