Digital twin-driven surface roughness prediction and process parameter adaptive optimization

机械加工 表面粗糙度 过程(计算) 粒子群优化 可预测性 刀具磨损 人工神经网络 过程变量 计算机科学 工程类 机械工程 人工智能 机器学习 数学 材料科学 操作系统 复合材料 统计
作者
Lilan Liu,Xiangyu Zhang,Xiang Wan,Shuaichang Zhou,Zenggui Gao
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:51: 101470-101470 被引量:69
标识
DOI:10.1016/j.aei.2021.101470
摘要

In the process of parts machining, the real-time state of equipment such as tool wear will change dynamically with the cutting process, and then affect the surface roughness of parts. The traditional process parameter optimization method is difficult to take into account the uncertain factors in the machining process, and cannot meet the requirements of real-time and predictability of process parameter optimization in intelligent manufacturing. To solve this problem, a digital twin-driven surface roughness prediction and process parameter adaptive optimization method is proposed. Firstly, a digital twin containing machining elements is constructed to monitor the machining process in real-time and serve as a data source for process parameter optimization; Then IPSO-GRNN (Improved Particle Swarm Optimization-Generalized Regression Neural Networks) prediction model is constructed to realize tool wear prediction and surface roughness prediction based on data; Finally, when the surface roughness predicted based on the real-time data fails to meet the processing requirements, the digital twin system will warn and perform adaptive optimization of cutting parameters based on the currently predicted tool wear. Through the development of a process-optimized digital twin system and a large number of cutting tests, the effectiveness and advancement of the method proposed in this paper are verified. The organic combination of real-time monitoring, accurate prediction, and optimization decision-making in the machining process is realized which solves the problem of inconsistency between quality and efficiency of the machining process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情芝麻完成签到,获得积分10
刚刚
刚刚
天人合一完成签到,获得积分0
1秒前
1秒前
所所应助MailkMonk采纳,获得10
1秒前
穆茹妖发布了新的文献求助10
2秒前
2秒前
3秒前
dddd完成签到,获得积分10
4秒前
zhui发布了新的文献求助10
4秒前
八十发布了新的文献求助10
5秒前
鹿芩完成签到,获得积分10
6秒前
luxxxiu完成签到,获得积分10
8秒前
顺顺关注了科研通微信公众号
8秒前
眼睛大老姆完成签到,获得积分10
8秒前
18275412695完成签到,获得积分10
8秒前
9秒前
科目三应助xjtu采纳,获得10
9秒前
10秒前
10秒前
在水一方应助热情芝麻采纳,获得10
10秒前
害羞的玉米完成签到,获得积分10
10秒前
12秒前
12秒前
李来仪发布了新的文献求助10
13秒前
英姑应助yangyong采纳,获得10
13秒前
13秒前
NexusExplorer应助通通通采纳,获得10
13秒前
liying完成签到,获得积分10
14秒前
14秒前
15秒前
王石雨晨完成签到 ,获得积分10
15秒前
15秒前
18275412695发布了新的文献求助10
15秒前
研0完成签到,获得积分10
16秒前
丁昆发布了新的文献求助10
17秒前
锦墨人生发布了新的文献求助30
18秒前
科研通AI5应助猪猪hero采纳,获得10
18秒前
NexusExplorer应助无情的白桃采纳,获得10
19秒前
sommer12345完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794