AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data

生存分析 事件(粒子物理) 机器学习 人工智能 计算机科学 统计 数学 量子力学 物理
作者
Feng Xie,Yilin Ning,Han Yuan,Benjamin A. Goldstein,Marcus Eng Hock Ong,Nan Liu,Bibhas Chakraborty
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:125: 103959-103959 被引量:13
标识
DOI:10.1016/j.jbi.2021.103959
摘要

Scoring systems are highly interpretable and widely used to evaluate time-to-event outcomes in healthcare research. However, existing time-to-event scores are predominantly created ad-hoc using a few manually selected variables based on clinician's knowledge, suggesting an unmet need for a robust and efficient generic score-generating method. AutoScore was previously developed as an interpretable machine learning score generator, integrating both machine learning and point-based scores in the strong discriminability and accessibility. We have further extended it to the time-to-event outcomes and developed AutoScore-Survival, for generating time-to-event scores with right-censored survival data. Random survival forest provided an efficient solution for selecting variables, and Cox regression was used for score weighting. We implemented our proposed method as an R package. We illustrated our method in a study of 90-day survival prediction for patients in intensive care units and compared its performance with other survival models, the random survival forest, and two traditional clinical scores. The AutoScore-Survival-derived scoring system was more parsimonious than survival models built using traditional variable selection methods (e.g., penalized likelihood approach and stepwise variable selection), and its performance was comparable to survival models using the same set of variables. Although AutoScore-Survival achieved a comparable integrated area under the curve of 0.782 (95% CI: 0.767–0.794), the integer-valued time-to-event scores generated are favorable in clinical applications because they are easier to compute and interpret. Our proposed AutoScore-Survival provides a robust and easy-to-use machine learning-based clinical score generator to studies of time-to-event outcomes. It gives a systematic guideline to facilitate the future development of time-to-event scores for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
hwq123完成签到,获得积分10
2秒前
surain发布了新的文献求助10
3秒前
DecC完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
wang完成签到,获得积分0
6秒前
荔枝发布了新的文献求助10
6秒前
哈基米德举报浮浮世世求助涉嫌违规
6秒前
炼金术士完成签到,获得积分10
6秒前
zz发布了新的文献求助10
6秒前
犹豫的世倌完成签到,获得积分10
7秒前
7秒前
无极微光应助科研小畅采纳,获得20
8秒前
呆萌新之完成签到,获得积分10
8秒前
追寻宛海完成签到,获得积分20
9秒前
9秒前
粥粥发布了新的文献求助30
9秒前
可乐清欢发布了新的文献求助10
10秒前
啊盘完成签到 ,获得积分10
10秒前
唐泽雪穗应助sywkamw采纳,获得10
10秒前
11秒前
白智妍完成签到,获得积分10
11秒前
12秒前
12秒前
11发布了新的文献求助30
12秒前
小杨完成签到 ,获得积分10
13秒前
13秒前
开心点完成签到,获得积分10
14秒前
14秒前
奋斗水蓉应助追寻宛海采纳,获得15
14秒前
邵开山完成签到,获得积分10
15秒前
打打应助kaka采纳,获得10
16秒前
哈基米德举报酷酷的阿恒求助涉嫌违规
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5177331
求助须知:如何正确求助?哪些是违规求助? 4365967
关于积分的说明 13593764
捐赠科研通 4216029
什么是DOI,文献DOI怎么找? 2312351
邀请新用户注册赠送积分活动 1311133
关于科研通互助平台的介绍 1259310