亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data

生存分析 事件(粒子物理) 机器学习 人工智能 计算机科学 统计 数学 量子力学 物理
作者
Feng Xie,Yilin Ning,Han Yuan,Benjamin A. Goldstein,Marcus Eng Hock Ong,Nan Liu,Bibhas Chakraborty
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:125: 103959-103959 被引量:13
标识
DOI:10.1016/j.jbi.2021.103959
摘要

Scoring systems are highly interpretable and widely used to evaluate time-to-event outcomes in healthcare research. However, existing time-to-event scores are predominantly created ad-hoc using a few manually selected variables based on clinician's knowledge, suggesting an unmet need for a robust and efficient generic score-generating method. AutoScore was previously developed as an interpretable machine learning score generator, integrating both machine learning and point-based scores in the strong discriminability and accessibility. We have further extended it to the time-to-event outcomes and developed AutoScore-Survival, for generating time-to-event scores with right-censored survival data. Random survival forest provided an efficient solution for selecting variables, and Cox regression was used for score weighting. We implemented our proposed method as an R package. We illustrated our method in a study of 90-day survival prediction for patients in intensive care units and compared its performance with other survival models, the random survival forest, and two traditional clinical scores. The AutoScore-Survival-derived scoring system was more parsimonious than survival models built using traditional variable selection methods (e.g., penalized likelihood approach and stepwise variable selection), and its performance was comparable to survival models using the same set of variables. Although AutoScore-Survival achieved a comparable integrated area under the curve of 0.782 (95% CI: 0.767–0.794), the integer-valued time-to-event scores generated are favorable in clinical applications because they are easier to compute and interpret. Our proposed AutoScore-Survival provides a robust and easy-to-use machine learning-based clinical score generator to studies of time-to-event outcomes. It gives a systematic guideline to facilitate the future development of time-to-event scores for clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
NexusExplorer应助chxericdong采纳,获得10
21秒前
Criminology34应助科研通管家采纳,获得10
41秒前
Criminology34应助科研通管家采纳,获得10
41秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
43秒前
量子星尘发布了新的文献求助10
1分钟前
chxericdong完成签到,获得积分10
1分钟前
1分钟前
1分钟前
chxericdong发布了新的文献求助10
1分钟前
LL完成签到 ,获得积分10
2分钟前
2分钟前
小麦发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
daihq3发布了新的文献求助10
2分钟前
utopia完成签到,获得积分20
2分钟前
文章多多发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
小蘑菇应助daihq3采纳,获得10
2分钟前
kukudou2发布了新的文献求助10
2分钟前
kuoping完成签到,获得积分0
3分钟前
3分钟前
NattyPoe发布了新的文献求助10
3分钟前
daihq3发布了新的文献求助10
3分钟前
刘烨完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
所所应助han采纳,获得10
3分钟前
4分钟前
4分钟前
han发布了新的文献求助10
4分钟前
daihq3完成签到,获得积分10
4分钟前
ss完成签到,获得积分10
4分钟前
4分钟前
香蕉觅云应助ss采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639644
求助须知:如何正确求助?哪些是违规求助? 4749473
关于积分的说明 15006976
捐赠科研通 4797793
什么是DOI,文献DOI怎么找? 2563888
邀请新用户注册赠送积分活动 1522798
关于科研通互助平台的介绍 1482492