AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data

生存分析 事件(粒子物理) 机器学习 人工智能 计算机科学 统计 数学 物理 量子力学
作者
Feng Xie,Yilin Ning,Han Yuan,Benjamin A. Goldstein,Marcus Eng Hock Ong,Nan Liu,Bibhas Chakraborty
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:125: 103959-103959 被引量:13
标识
DOI:10.1016/j.jbi.2021.103959
摘要

Scoring systems are highly interpretable and widely used to evaluate time-to-event outcomes in healthcare research. However, existing time-to-event scores are predominantly created ad-hoc using a few manually selected variables based on clinician's knowledge, suggesting an unmet need for a robust and efficient generic score-generating method. AutoScore was previously developed as an interpretable machine learning score generator, integrating both machine learning and point-based scores in the strong discriminability and accessibility. We have further extended it to the time-to-event outcomes and developed AutoScore-Survival, for generating time-to-event scores with right-censored survival data. Random survival forest provided an efficient solution for selecting variables, and Cox regression was used for score weighting. We implemented our proposed method as an R package. We illustrated our method in a study of 90-day survival prediction for patients in intensive care units and compared its performance with other survival models, the random survival forest, and two traditional clinical scores. The AutoScore-Survival-derived scoring system was more parsimonious than survival models built using traditional variable selection methods (e.g., penalized likelihood approach and stepwise variable selection), and its performance was comparable to survival models using the same set of variables. Although AutoScore-Survival achieved a comparable integrated area under the curve of 0.782 (95% CI: 0.767–0.794), the integer-valued time-to-event scores generated are favorable in clinical applications because they are easier to compute and interpret. Our proposed AutoScore-Survival provides a robust and easy-to-use machine learning-based clinical score generator to studies of time-to-event outcomes. It gives a systematic guideline to facilitate the future development of time-to-event scores for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献互助1发布了新的文献求助10
1秒前
1秒前
天天快乐应助聪慧代芹采纳,获得10
1秒前
陈明宇完成签到,获得积分10
2秒前
YYY完成签到,获得积分10
2秒前
一多完成签到 ,获得积分20
2秒前
MHK完成签到,获得积分10
2秒前
舍得完成签到,获得积分10
2秒前
3秒前
Tammy完成签到 ,获得积分10
3秒前
Hello~完成签到,获得积分10
3秒前
3秒前
tent01完成签到,获得积分10
3秒前
科目三应助尹小末采纳,获得10
3秒前
4秒前
贪玩丸子完成签到,获得积分10
4秒前
1661321476完成签到,获得积分10
4秒前
Reef完成签到,获得积分10
4秒前
魏骜琦完成签到,获得积分10
5秒前
无花果应助iwww采纳,获得10
5秒前
张思琪完成签到,获得积分10
5秒前
5秒前
CipherSage应助无心的星月采纳,获得10
5秒前
Han完成签到,获得积分10
6秒前
猫好好完成签到,获得积分10
6秒前
廉不可发布了新的文献求助10
7秒前
Eureka完成签到 ,获得积分10
8秒前
9秒前
蔚蔚蓝天完成签到,获得积分10
9秒前
追寻依风完成签到,获得积分10
9秒前
9秒前
ddsyg126完成签到,获得积分10
9秒前
有魅力的从凝完成签到,获得积分10
9秒前
史呆芬发布了新的文献求助10
9秒前
欣慰的白羊完成签到,获得积分10
10秒前
10秒前
11秒前
煎饼煎饼完成签到,获得积分10
11秒前
淡然觅荷完成签到 ,获得积分10
11秒前
jack1511完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044