AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data

生存分析 事件(粒子物理) 机器学习 人工智能 计算机科学 统计 数学 物理 量子力学
作者
Feng Xie,Yilin Ning,Han Yuan,Benjamin A. Goldstein,Marcus Eng Hock Ong,Nan Liu,Bibhas Chakraborty
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:125: 103959-103959 被引量:13
标识
DOI:10.1016/j.jbi.2021.103959
摘要

Scoring systems are highly interpretable and widely used to evaluate time-to-event outcomes in healthcare research. However, existing time-to-event scores are predominantly created ad-hoc using a few manually selected variables based on clinician's knowledge, suggesting an unmet need for a robust and efficient generic score-generating method. AutoScore was previously developed as an interpretable machine learning score generator, integrating both machine learning and point-based scores in the strong discriminability and accessibility. We have further extended it to the time-to-event outcomes and developed AutoScore-Survival, for generating time-to-event scores with right-censored survival data. Random survival forest provided an efficient solution for selecting variables, and Cox regression was used for score weighting. We implemented our proposed method as an R package. We illustrated our method in a study of 90-day survival prediction for patients in intensive care units and compared its performance with other survival models, the random survival forest, and two traditional clinical scores. The AutoScore-Survival-derived scoring system was more parsimonious than survival models built using traditional variable selection methods (e.g., penalized likelihood approach and stepwise variable selection), and its performance was comparable to survival models using the same set of variables. Although AutoScore-Survival achieved a comparable integrated area under the curve of 0.782 (95% CI: 0.767–0.794), the integer-valued time-to-event scores generated are favorable in clinical applications because they are easier to compute and interpret. Our proposed AutoScore-Survival provides a robust and easy-to-use machine learning-based clinical score generator to studies of time-to-event outcomes. It gives a systematic guideline to facilitate the future development of time-to-event scores for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
niko发布了新的文献求助10
1秒前
2441922098发布了新的文献求助10
4秒前
DJY发布了新的文献求助10
4秒前
5秒前
此去经年发布了新的文献求助30
5秒前
6秒前
飞飞鸟鸟与鱼完成签到,获得积分10
9秒前
shmmxy完成签到,获得积分20
9秒前
cherry发布了新的文献求助20
10秒前
葛根发布了新的文献求助10
10秒前
jxj发布了新的文献求助10
11秒前
YY发布了新的文献求助10
14秒前
大模型应助安an采纳,获得10
21秒前
顺利张完成签到,获得积分10
23秒前
潇洒的小鸽子完成签到 ,获得积分10
24秒前
Jasper应助aa采纳,获得10
27秒前
wanci应助顺利张采纳,获得10
27秒前
27秒前
令狐新竹完成签到 ,获得积分10
31秒前
余琳发布了新的文献求助10
31秒前
无花果应助科研助手采纳,获得10
33秒前
33秒前
34秒前
35秒前
安an完成签到,获得积分20
37秒前
ws应助积极盼山采纳,获得10
38秒前
1111A发布了新的文献求助10
39秒前
白白完成签到,获得积分10
39秒前
40秒前
40秒前
41秒前
bkagyin应助余琳采纳,获得10
42秒前
可乐不珍珍完成签到 ,获得积分10
42秒前
静静发布了新的文献求助10
44秒前
44秒前
46秒前
47秒前
白白发布了新的文献求助10
47秒前
48秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158244
求助须知:如何正确求助?哪些是违规求助? 2809513
关于积分的说明 7882468
捐赠科研通 2468017
什么是DOI,文献DOI怎么找? 1313863
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601943