清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data

生存分析 事件(粒子物理) 机器学习 人工智能 计算机科学 统计 数学 量子力学 物理
作者
Feng Xie,Yilin Ning,Han Yuan,Benjamin A. Goldstein,Marcus Eng Hock Ong,Nan Liu,Bibhas Chakraborty
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:125: 103959-103959 被引量:13
标识
DOI:10.1016/j.jbi.2021.103959
摘要

Scoring systems are highly interpretable and widely used to evaluate time-to-event outcomes in healthcare research. However, existing time-to-event scores are predominantly created ad-hoc using a few manually selected variables based on clinician's knowledge, suggesting an unmet need for a robust and efficient generic score-generating method. AutoScore was previously developed as an interpretable machine learning score generator, integrating both machine learning and point-based scores in the strong discriminability and accessibility. We have further extended it to the time-to-event outcomes and developed AutoScore-Survival, for generating time-to-event scores with right-censored survival data. Random survival forest provided an efficient solution for selecting variables, and Cox regression was used for score weighting. We implemented our proposed method as an R package. We illustrated our method in a study of 90-day survival prediction for patients in intensive care units and compared its performance with other survival models, the random survival forest, and two traditional clinical scores. The AutoScore-Survival-derived scoring system was more parsimonious than survival models built using traditional variable selection methods (e.g., penalized likelihood approach and stepwise variable selection), and its performance was comparable to survival models using the same set of variables. Although AutoScore-Survival achieved a comparable integrated area under the curve of 0.782 (95% CI: 0.767–0.794), the integer-valued time-to-event scores generated are favorable in clinical applications because they are easier to compute and interpret. Our proposed AutoScore-Survival provides a robust and easy-to-use machine learning-based clinical score generator to studies of time-to-event outcomes. It gives a systematic guideline to facilitate the future development of time-to-event scores for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yangxi发布了新的文献求助10
5秒前
研友_VZG7GZ应助yangxi采纳,获得10
10秒前
yangxi完成签到,获得积分10
17秒前
20秒前
42秒前
1分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
BinBlues完成签到,获得积分10
1分钟前
1分钟前
1分钟前
vicky完成签到 ,获得积分10
2分钟前
冷傲半邪完成签到,获得积分10
2分钟前
2分钟前
nuliguan完成签到 ,获得积分10
2分钟前
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
zpc猪猪完成签到,获得积分10
3分钟前
3分钟前
fabius0351完成签到 ,获得积分10
3分钟前
如歌完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
003发布了新的社区帖子
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
7分钟前
Archer发布了新的文献求助10
7分钟前
彭于晏应助003采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596369
求助须知:如何正确求助?哪些是违规求助? 4008305
关于积分的说明 12409093
捐赠科研通 3687302
什么是DOI,文献DOI怎么找? 2032309
邀请新用户注册赠送积分活动 1065560
科研通“疑难数据库(出版商)”最低求助积分说明 950863