增采样
棱锥(几何)
联营
人工智能
计算机科学
光流
计算机视觉
特征(语言学)
模式识别(心理学)
特征提取
采样(信号处理)
无监督学习
插值(计算机图形学)
图像(数学)
数学
滤波器(信号处理)
哲学
语言学
几何学
作者
Shuaicheng Liu,Kun Luo,Ao Luo,Chuan Wang,Fanman Meng,Bing Zeng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology
[Institute of Electrical and Electronics Engineers]
日期:2022-07-01
卷期号:32 (7): 4282-4295
被引量:6
标识
DOI:10.1109/tcsvt.2021.3130281
摘要
We present an unsupervised optical flow estimation method by proposing an adaptive pyramid sampling in the deep pyramid network. Specifically, in the pyramid downsampling, we propose a Content-Aware Pooling (CAP) module, which promotes local feature gathering by avoiding cross region pooling, so that the learned features become more representative. In the pyramid upsampling, we propose an Adaptive Flow Upsampling (AFU) module, where cross edge interpolation can be avoided, producing sharp motion boundaries. Equipped with these two modules, our method achieves the best performance for unsupervised optical flow estimation on multiple leading benchmarks, including MPI-Sintel, KITTI 2012 and KITTI 2015. Particularly, we achieve EPE=1.5 on KITTI 2012 and F1=9.67% KITTI 2015, which outperform the previous state-of-the-art methods by 16.7% and 13.1%, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI