Atomic-scale understanding on the physics and control of intrinsic point defects in lead halide perovskites

晶体缺陷 原子单位 纳米技术 半导体 工程物理 材料科学 光电子学 凝聚态物理 物理 量子力学
作者
Jun Kang,Jingbo Li,Su‐Huai Wei
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:8 (3) 被引量:48
标识
DOI:10.1063/5.0052402
摘要

Lead halide perovskites (LHPs) have attracted considerable attention as promising materials for photovoltaic and optoelectronic applications. Intrinsic point defects play an important role in determining the performance of semiconductor devices. LHPs exhibit strong ionic character and unique electronic structure; thus, their defect properties are quite different from conventional covalent bond semiconductors. Understanding the defect science is crucial to the performance optimization of LHP-based devices. State-of-the-art first-principles calculation methods enable one to explore atomistic mechanisms of various defect-related processes, and tremendous efforts from theoretical simulations have provided invaluable insights to the defect physics and defect control of LHPs. In this review, we summarize recent progress, made with the help of theoretical modeling, on atomic-scale understanding about intrinsic point defects and related processes in LHPs. The fundamental properties of intrinsic point defects in LHPs are first introduced, including defect formation energy, charge transition level, and defect tolerance and its origin. A particular emphasis is given to the effects of band edge position on calculated defect properties. The impact of these defects on structural properties, carrier dynamics, and photoluminescence of LHPs is then presented. Advanced strategies to engineer the defects in LHPs are also reviewed, such as growth condition, defect passivation, and doping. Finally, we discuss open issues and outline directions toward a better understanding of defects of LHPs from a theoretical perspective. The goal of the review is to provide a comprehensive summary of atomic-scale understanding of intrinsic point defects in LHPs and to help further related research in the perovskite community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
何洋完成签到 ,获得积分10
2秒前
2秒前
3秒前
mnc发布了新的文献求助10
3秒前
零零壹发布了新的文献求助10
4秒前
4秒前
开坦克的贝塔完成签到,获得积分10
4秒前
脑洞疼应助sheishei采纳,获得10
7秒前
7秒前
xyrt发布了新的文献求助10
8秒前
xxx发布了新的文献求助10
8秒前
8秒前
小杭76应助大道酬勤采纳,获得10
10秒前
彭三爷关注了科研通微信公众号
10秒前
合适冰棍发布了新的文献求助10
11秒前
薛之谦的猫应助hhxing采纳,获得10
12秒前
12秒前
hyacinth11111完成签到,获得积分10
13秒前
Liekkas完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
小羊完成签到,获得积分10
15秒前
Ava应助合适冰棍采纳,获得10
16秒前
18秒前
18秒前
19秒前
lvmes完成签到,获得积分10
19秒前
orixero应助如梦如画采纳,获得10
20秒前
20秒前
所所应助小芦铃采纳,获得10
21秒前
徐凯俊完成签到,获得积分10
21秒前
健康的果汁完成签到,获得积分20
21秒前
23秒前
夏就夏吧完成签到,获得积分10
24秒前
Shenchen发布了新的文献求助10
24秒前
24秒前
cuber完成签到 ,获得积分10
24秒前
24秒前
wulalala完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492