Atomic-scale understanding on the physics and control of intrinsic point defects in lead halide perovskites

晶体缺陷 原子单位 纳米技术 半导体 工程物理 材料科学 光电子学 凝聚态物理 物理 量子力学
作者
Jun Kang,Jingbo Li,Su‐Huai Wei
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:8 (3) 被引量:58
标识
DOI:10.1063/5.0052402
摘要

Lead halide perovskites (LHPs) have attracted considerable attention as promising materials for photovoltaic and optoelectronic applications. Intrinsic point defects play an important role in determining the performance of semiconductor devices. LHPs exhibit strong ionic character and unique electronic structure; thus, their defect properties are quite different from conventional covalent bond semiconductors. Understanding the defect science is crucial to the performance optimization of LHP-based devices. State-of-the-art first-principles calculation methods enable one to explore atomistic mechanisms of various defect-related processes, and tremendous efforts from theoretical simulations have provided invaluable insights to the defect physics and defect control of LHPs. In this review, we summarize recent progress, made with the help of theoretical modeling, on atomic-scale understanding about intrinsic point defects and related processes in LHPs. The fundamental properties of intrinsic point defects in LHPs are first introduced, including defect formation energy, charge transition level, and defect tolerance and its origin. A particular emphasis is given to the effects of band edge position on calculated defect properties. The impact of these defects on structural properties, carrier dynamics, and photoluminescence of LHPs is then presented. Advanced strategies to engineer the defects in LHPs are also reviewed, such as growth condition, defect passivation, and doping. Finally, we discuss open issues and outline directions toward a better understanding of defects of LHPs from a theoretical perspective. The goal of the review is to provide a comprehensive summary of atomic-scale understanding of intrinsic point defects in LHPs and to help further related research in the perovskite community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫伟祺完成签到,获得积分10
刚刚
深情安青应助QWE采纳,获得10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
美满信封完成签到 ,获得积分10
1秒前
zxdawn发布了新的文献求助10
2秒前
西瓜西瓜应助阿阳采纳,获得10
4秒前
典雅大白菜真实的钥匙完成签到,获得积分10
4秒前
周中梁完成签到,获得积分10
4秒前
mosisa发布了新的文献求助10
4秒前
5秒前
深情安青应助min采纳,获得10
5秒前
小高爱科研完成签到,获得积分10
5秒前
DS发布了新的文献求助10
6秒前
觉觉完成签到,获得积分10
6秒前
充电宝应助aaa采纳,获得10
8秒前
yyyyy发布了新的文献求助10
8秒前
Yilian发布了新的文献求助10
9秒前
慕青应助酷酷河马采纳,获得10
11秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
是莉莉娅完成签到,获得积分10
15秒前
16秒前
sword完成签到,获得积分10
19秒前
是莉莉娅发布了新的文献求助10
19秒前
小明发布了新的文献求助10
20秒前
21秒前
letter完成签到,获得积分10
21秒前
草莓发布了新的文献求助10
21秒前
24秒前
量子星尘发布了新的文献求助30
24秒前
24秒前
25秒前
25秒前
26秒前
Ada完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
深情安青应助DS采纳,获得50
27秒前
充电宝应助满意的涵菱采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729040
求助须知:如何正确求助?哪些是违规求助? 5315724
关于积分的说明 15315600
捐赠科研通 4876049
什么是DOI,文献DOI怎么找? 2619186
邀请新用户注册赠送积分活动 1568758
关于科研通互助平台的介绍 1525247