湍流
代表(政治)
卷积(计算机科学)
相空间
不变(物理)
计算机科学
基础(线性代数)
大气湍流
相(物质)
算法
数学
人工智能
物理
气象学
几何学
人工神经网络
量子力学
政治
热力学
数学物理
法学
政治学
作者
Zhiyuan Mao,Nicholas Chimitt,Stanley H. Chan
标识
DOI:10.1109/iccv48922.2021.01449
摘要
Fast and accurate simulation of imaging through atmospheric turbulence is essential for developing turbulence mitigation algorithms. Recognizing the limitations of previous approaches, we introduce a new concept known as the phase-to-space (P2S) transform to significantly speed up the simulation. P2S is built upon three ideas: (1) reformulating the spatially varying convolution as a set of invariant convolutions with basis functions, (2) learning the basis function via the known turbulence statistics models, (3) implementing the P2S transform via a light-weight network that directly converts the phase representation to spatial representation. The new simulator offers 300× – 1000× speed up compared to the mainstream split-step simulators while preserving the essential turbulence statistics.
科研通智能强力驱动
Strongly Powered by AbleSci AI